NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 137 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gorgun, Guher; Bulut, Okan – Large-scale Assessments in Education, 2023
In low-stakes assessment settings, students' performance is not only influenced by students' ability level but also their test-taking engagement. In computerized adaptive tests (CATs), disengaged responses (e.g., rapid guesses) that fail to reflect students' true ability levels may lead to the selection of less informative items and thereby…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Chia-Wen; Wang, Wen-Chung; Chiu, Ming Ming; Ro, Sage – Journal of Educational Measurement, 2020
The use of computerized adaptive testing algorithms for ranking items (e.g., college preferences, career choices) involves two major challenges: unacceptably high computation times (selecting from a large item pool with many dimensions) and biased results (enhanced preferences or intensified examinee responses because of repeated statements across…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Mandracchia, Nina R.; Sims, Wesley A. – Computers in the Schools, 2020
As technology use continues to rapidly increase, so too does consumer use of web-based resources. While important, accessibility is often overemphasized by users when consuming and evaluating web resources. This prioritization may have particularly negative consequences for the selection of supports or interventions in educational settings. This…
Descriptors: Internet, Resources, Selection, Rating Scales
Peer reviewed Peer reviewed
Direct linkDirect link
Ravand, Hamdollah; Baghaei, Purya – International Journal of Testing, 2020
More than three decades after their introduction, diagnostic classification models (DCM) do not seem to have been implemented in educational systems for the purposes they were devised. Most DCM research is either methodological for model development and refinement or retrofitting to existing nondiagnostic tests and, in the latter case, basically…
Descriptors: Classification, Models, Diagnostic Tests, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Bao, Yu; Bradshaw, Laine – Measurement: Interdisciplinary Research and Perspectives, 2018
Diagnostic classification models (DCMs) can provide multidimensional diagnostic feedback about students' mastery levels of knowledge components or attributes. One advantage of using DCMs is the ability to accurately and reliably classify students into mastery levels with a relatively small number of items per attribute. Combining DCMs with…
Descriptors: Test Items, Selection, Adaptive Testing, Computer Assisted Testing
Carroll, Ian A. – ProQuest LLC, 2017
Item exposure control is, relative to adaptive testing, a nascent concept that has emerged only in the last two to three decades on an academic basis as a practical issue in high-stakes computerized adaptive tests. This study aims to implement a new strategy in item exposure control by incorporating the standard error of the ability estimate into…
Descriptors: Test Items, Computer Assisted Testing, Selection, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Ackerman, Terry – Journal of Educational and Behavioral Statistics, 2016
In this commentary, University of North Carolina's associate dean of research and assessment at the School of Education Terry Ackerman poses questions and shares his thoughts on David Thissen's essay, "Bad Questions: An Essay Involving Item Response Theory" (this issue). Ackerman begins by considering the two purposes of Item Response…
Descriptors: Item Response Theory, Test Items, Selection, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sahin, Alper; Ozbasi, Durmus – Eurasian Journal of Educational Research, 2017
Purpose: This study aims to reveal effects of content balancing and item selection method on ability estimation in computerized adaptive tests by comparing Fisher's maximum information (FMI) and likelihood weighted information (LWI) methods. Research Methods: Four groups of examinees (250, 500, 750, 1000) and a bank of 500 items with 10 different…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Test Content
Peer reviewed Peer reviewed
Direct linkDirect link
He, Wei; Diao, Qi; Hauser, Carl – Educational and Psychological Measurement, 2014
This study compared four item-selection procedures developed for use with severely constrained computerized adaptive tests (CATs). Severely constrained CATs refer to those adaptive tests that seek to meet a complex set of constraints that are often not conclusive to each other (i.e., an item may contribute to the satisfaction of several…
Descriptors: Comparative Analysis, Test Items, Selection, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Kopf, Julia; Zeileis, Achim; Strobl, Carolin – Educational and Psychological Measurement, 2015
Differential item functioning (DIF) indicates the violation of the invariance assumption, for instance, in models based on item response theory (IRT). For item-wise DIF analysis using IRT, a common metric for the item parameters of the groups that are to be compared (e.g., for the reference and the focal group) is necessary. In the Rasch model,…
Descriptors: Test Items, Equated Scores, Test Bias, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Ying; Patton, Jeffrey M.; Shao, Can – Educational and Psychological Measurement, 2015
a-Stratified computerized adaptive testing with b-blocking (AST), as an alternative to the widely used maximum Fisher information (MFI) item selection method, can effectively balance item pool usage while providing accurate latent trait estimates in computerized adaptive testing (CAT). However, previous comparisons of these methods have treated…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Item Banks
Peer reviewed Peer reviewed
Direct linkDirect link
Yao, Lihua – Journal of Educational Measurement, 2014
The intent of this research was to find an item selection procedure in the multidimensional computer adaptive testing (CAT) framework that yielded higher precision for both the domain and composite abilities, had a higher usage of the item pool, and controlled the exposure rate. Five multidimensional CAT item selection procedures (minimum angle;…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Kyung T. – Journal of Educational Measurement, 2012
Successful administration of computerized adaptive testing (CAT) programs in educational settings requires that test security and item exposure control issues be taken seriously. Developing an item selection algorithm that strikes the right balance between test precision and level of item pool utilization is the key to successful implementation…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Selection
He, Wei; Diao, Qi; Hauser, Carl – Online Submission, 2013
This study compares the four existing procedures handling the item selection in severely constrained computerized adaptive tests (CAT). These procedures include weighted deviation model (WDM), weighted penalty model (WPM), maximum priority index (MPI), and shadow test approach (STA). Severely constrained CAT refer to those adaptive tests seeking…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Item Banks
Peer reviewed Peer reviewed
Direct linkDirect link
Sha, Li; Schunn, Christian; Bathgate, Meghan – Journal of Research in Science Teaching, 2015
Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…
Descriptors: Grade 5, Grade 6, Early Adolescents, Learning Experience
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10