Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 12 |
Descriptor
Natural Language Processing | 12 |
Reading Comprehension | 12 |
Semantics | 12 |
Artificial Intelligence | 5 |
Computer Software | 5 |
Graphs | 4 |
Models | 4 |
Reading Strategies | 4 |
Connected Discourse | 3 |
Inferences | 3 |
Intelligent Tutoring Systems | 3 |
More ▼ |
Author
Publication Type
Reports - Research | 9 |
Speeches/Meeting Papers | 8 |
Journal Articles | 3 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
High Schools | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Gates MacGinitie Reading Tests | 1 |
What Works Clearinghouse Rating
Dascalu, Marina-Dorinela; Ruseti, Stefan; Dascalu, Mihai; McNamara, Danielle; Trausan-Matu, Stefan – Grantee Submission, 2020
Reading comprehension requires readers to connect ideas within and across texts to produce a coherent mental representation. One important factor in that complex process regards the cohesion of the document(s). Here, we tackle the challenge of providing researchers and practitioners with a tool to visualize text cohesion both within (intra) and…
Descriptors: Network Analysis, Graphs, Connected Discourse, Reading Comprehension
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Reading Processes, Memory, Schemata (Cognition)
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Theories of discourse argue that comprehension depends on the coherence of the learner's mental representation. Our aim is to create a reliable automated representation to estimate readers' level of comprehension based on different productions, namely self-explanations and answers to open-ended questions. Previous work relied on Cohesion Network…
Descriptors: Network Analysis, Reading Comprehension, Automation, Artificial Intelligence
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Jian Cheng – Grantee Submission, 2018
We discuss the real-time scoring logic for a self-administered oral reading assessment on mobile devices (Moby.Read) to measure the three components of children's oral reading fluency skills: words correct per minute, expression and comprehension. Critical techniques that make the assessment real-time on-device are discussed in detail. We propose…
Descriptors: Scoring, Oral Reading, Reading Fluency, Reading Comprehension
Li, Haiying; Cai, Zhiqiang; Graesser, Arthur – International Educational Data Mining Society, 2016
In this paper, we applied the crowdsourcing approach to develop an automated popularity summary scoring, called wild summaries. In contrast, the golden standard summaries generated by one or more experts are called expert summaries. The innovation of our study is to compute LSA (Latent Semantic Analysis) similarities between target summary and…
Descriptors: Peer Acceptance, Electronic Publishing, Collaborative Writing, Grading
Varner, Laura K.; Jackson, G. Tanner; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2013
This study expands upon an existing model of students' reading comprehension ability within an intelligent tutoring system. The current system evaluates students' natural language input using a local student model. We examine the potential to expand this model by assessing the linguistic features of self-explanations aggregated across entire…
Descriptors: Reading Comprehension, Intelligent Tutoring Systems, Natural Language Processing, Reading Ability
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – International Journal of Artificial Intelligence in Education, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence