Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 20 |
Descriptor
Sequential Approach | 20 |
Models | 10 |
Intelligent Tutoring Systems | 9 |
Learning Processes | 8 |
Prediction | 8 |
Problem Solving | 8 |
Student Behavior | 8 |
Data Analysis | 6 |
Online Courses | 6 |
Interaction | 5 |
Middle School Students | 5 |
More ▼ |
Source
International Educational… | 20 |
Author
Lynch, Collin F. | 2 |
Polyzou, Agoritsa | 2 |
ALSaad, Fareedah | 1 |
Acar, Umut | 1 |
Akpinar, Nil-Jana | 1 |
Alawini, Abdussalam | 1 |
Aleven, Vincent | 1 |
An, Dongwook | 1 |
Barnes, Tiffany | 1 |
Barnes, Tiffany, Ed. | 1 |
Beck, Joseph E. | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 18 |
Reports - Research | 14 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Middle Schools | 7 |
Higher Education | 6 |
Junior High Schools | 6 |
Postsecondary Education | 6 |
Secondary Education | 6 |
Elementary Education | 4 |
Intermediate Grades | 3 |
Grade 6 | 2 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Location
Afghanistan | 1 |
Finland | 1 |
Florida | 1 |
France | 1 |
Illinois (Chicago) | 1 |
North Carolina | 1 |
North Carolina (Raleigh) | 1 |
Pennsylvania (Pittsburgh) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Rüdian, Sylvio; Pinkwart, Niels – International Educational Data Mining Society, 2021
Finding the optimal topic sequence of online courses requires experts with lots of knowledge about taught topics. Having a good order is necessary for a good learning experience. By using educational recommender systems across different platforms we have the problem that the connection to an ontology sometimes does not exist. Thus, the state of…
Descriptors: Online Courses, Sequential Approach, Educational Technology, Computer Uses in Education
ALSaad, Fareedah; Reichel, Thomas; Zeng, Yuchen; Alawini, Abdussalam – International Educational Data Mining Society, 2021
With the emergence of MOOCs, it becomes crucial to automate the process of a course design to accommodate the diverse learning demands of students. Modeling the relationships among educational topics is a fundamental first step for automating curriculum planning and course design. In this paper, we introduce "Topic Transition Map" (TTM),…
Descriptors: Online Courses, Student Diversity, Student Needs, Course Content
Khan, Md Akib Zabed; Polyzou, Agoritsa – International Educational Data Mining Society, 2023
Academic advising plays an important role in students' decision-making in higher education. Data-driven methods provide useful recommendations to students to help them with degree completion. Several course recommendation models have been proposed in the literature to recommend courses for the next semester. One aspect of the data that has yet to…
Descriptors: Course Selection (Students), Learning Analytics, Academic Advising, Decision Making
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Kang, Jina; An, Dongwook; Yan, Lili; Liu, Min – International Educational Data Mining Society, 2019
Collaborative problem-solving (CPS) as a key competency required in the 21st century. There has been an increasing need to understand CPS since it involves not only cognitive but also social processes, and thus its process is difficult to examine. Recent research has highlighted that computer-based learning environments provide an opportunity for…
Descriptors: Cooperative Learning, Problem Solving, Science Education, Educational Games
Akpinar, Nil-Jana; Ramdas, Aaditya; Acar, Umut – International Educational Data Mining Society, 2020
Educational software data promises unique insights into students' study behaviors and drivers of success. While much work has been dedicated to performance prediction in massive open online courses, it is unclear if the same methods can be applied to blended courses and a deeper understanding of student strategies is often missing. We use pattern…
Descriptors: Learning Strategies, Blended Learning, Learning Analytics, Student Behavior
Choffin, Benoît; Popineau, Fabrice; Bourda, Yolaine; Vie, Jill-Jênn – International Educational Data Mining Society, 2019
Spaced repetition is among the most studied learning strategies in the cognitive science literature. It consists in temporally distributing exposure to an information so as to improve long-term memorization. Providing students with an adaptive and personalized distributed practice schedule would benefit more than just a generic scheduler. However,…
Descriptors: Intervals, Scheduling, Repetition, Memorization
Käser, Tanja; Schwartz, Daniel L. – International Educational Data Mining Society, 2019
Open-ended learning environments (OELEs) allow students to freely interact with the content and to discover important principles and concepts of the learning domain on their own. However, only some students possess the necessary skills for efficient and effective exploration. Guidance in the form of targeted interventions or feedback therefore has…
Descriptors: Educational Environment, Interaction, Cluster Grouping, Models
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Mi, Fei; Faltings, Boi – International Educational Data Mining Society, 2017
Massive open online courses (MOOCs) have demonstrated growing popularity and rapid development in recent years. Discussion forums have become crucial components for students and instructors to widely exchange ideas and propagate knowledge. It is important to recommend helpful information from forums to students for the benefit of the learning…
Descriptors: Online Courses, Sequential Approach, Discussion Groups, Student Interests
Chen, Binglin; West, Matthew; Ziles, Craig – International Educational Data Mining Society, 2018
This paper attempts to quantify the accuracy limit of "nextitem-correct" prediction by using numerical optimization to estimate the student's probability of getting each question correct given a complete sequence of item responses. This optimization is performed without an explicit parameterized model of student behavior, but with the…
Descriptors: Accuracy, Probability, Student Behavior, Test Items
Shen, Shitian; Chi, Min – International Educational Data Mining Society, 2017
One of the most challenging tasks in the field of Educational Data Mining (EDM) is to cluster students directly based on system-student sequential moment-to-moment interactive trajectories. The objective of this study is to build a general temporal clustering framework that captures the distinct characteristics of students' sequential behaviors…
Descriptors: Sequential Approach, Cluster Grouping, Interaction, Student Behavior
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Gitinabard, Niki; Barnes, Tiffany; Heckman, Sarah; Lynch, Collin F. – International Educational Data Mining Society, 2019
Students' interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict…
Descriptors: Blended Learning, Student Adjustment, Online Courses, Study Habits
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma – International Educational Data Mining Society, 2016
How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…
Descriptors: Intelligent Tutoring Systems, Sequential Approach, Problem Solving, Learning Processes
Previous Page | Next Page »
Pages: 1 | 2