NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions