NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Descriptors: Bayesian Statistics, Structural Equation Models, Computer Software, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum – Psychometrika, 2009
Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…
Descriptors: Structural Equation Models, Simulation, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum; Hser, Yih-Ing – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly…
Descriptors: Medical Research, Structural Equation Models, Longitudinal Studies, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2008
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Descriptors: Structural Equation Models, Bayesian Statistics, Evaluation Methods, Evaluation Research
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…
Descriptors: Psychological Studies, Life Satisfaction, Job Satisfaction, Structural Equation Models
Peer reviewed Peer reviewed
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2003
Developed a full maximum likelihood method for obtaining joint estimates of variances and correlations among continuous and polytomous variables with incomplete data that are missing at random with an ignorable missing mechanism. Simulation results and an empirical example illustrate the approach. (SLD)
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Tang, Nian-Sheng – Psychometrika, 2004
By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…
Descriptors: Structural Equation Models, Influences, Simulation, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum – Psychometrika, 2006
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Descriptors: Mathematics, Structural Equation Models, Bayesian Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Shi, Jian-Qing; Lee, Sik-Yum – Psychometrika, 1997
Explores posterior analysis in estimating factor score in a confirmatory factor analysis model with polytomous, censored or truncated data, and studies the accuracy of Bayesian estimates through simulation. Results support these Bayesian estimates for statistical inference. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Factor Structure, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin Yuan; Poon, Wai-Yin – Multivariate Behavioral Research, 2004
Various approaches using the maximum likelihood (ML) option of the LISREL program and products of indicators have been proposed to analyze structural equation models with non-linear latent effects on the basis of Kenny and Judd's formulation. Recently, some methods based on the Bayesian approach and the exact ML approaches have been developed.…
Descriptors: Comparative Analysis, Structural Equation Models, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Lee, Sik-Yum; Zhu, Hong-Tu – Psychometrika, 2002
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Song, Xin-Yuan; Lee, Sik-Yum; Zhu, Hong-Tu – Structural Equation Modeling, 2001
Studied the maximum likelihood estimation of unknown parameters in a general LISREL-type model with mixed polytomous and continuous data through Monte Carlo simulation. Proposes a model selection procedure for obtaining good models for the underlying substantive theory and discusses the effectiveness of the proposed model. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Selection, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Lu, Bin – Multivariate Behavioral Research, 2003
In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…
Descriptors: Structural Equation Models, Computation, Mathematics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Item Response Theory, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K. – Journal of Educational and Behavioral Statistics, 2003
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Descriptors: Structural Equation Models, Simulation, Computer Software, Computation
Previous Page | Next Page ยป
Pages: 1  |  2