NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Zhu, Hongyue; Jiao, Hong; Gao, Wei; Meng, Xiangbin – Journal of Educational and Behavioral Statistics, 2023
Change-point analysis (CPA) is a method for detecting abrupt changes in parameter(s) underlying a sequence of random variables. It has been applied to detect examinees' aberrant test-taking behavior by identifying abrupt test performance change. Previous studies utilized maximum likelihood estimations of ability parameters, focusing on detecting…
Descriptors: Bayesian Statistics, Test Wiseness, Behavior Problems, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Martinková, Patrícia; Bartoš, František; Brabec, Marek – Journal of Educational and Behavioral Statistics, 2023
Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables, such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for the implementation of policies with the potential to decrease measurement error…
Descriptors: Interrater Reliability, Bayesian Statistics, Statistical Inference, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Vidotto, Davide; Vermunt, Jeroen K.; van Deun, Katrijn – Journal of Educational and Behavioral Statistics, 2018
With this article, we propose using a Bayesian multilevel latent class (BMLC; or mixture) model for the multiple imputation of nested categorical data. Unlike recently developed methods that can only pick up associations between pairs of variables, the multilevel mixture model we propose is flexible enough to automatically deal with complex…
Descriptors: Bayesian Statistics, Multivariate Analysis, Data, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Ping – Journal of Educational and Behavioral Statistics, 2017
Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…
Descriptors: Test Items, Item Response Theory, Test Construction, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Longjuan; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2015
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
Descriptors: Item Response Theory, Statistical Analysis, Goodness of Fit, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Si, Yajuan; Reiter, Jerome P. – Journal of Educational and Behavioral Statistics, 2013
In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Measurement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2015
Person-fit assessment may help the researcher to obtain additional information regarding the answering behavior of persons. Although several researchers examined person fit, there is a lack of research on person-fit assessment for mixed-format tests. In this article, the lz statistic and the ?2 statistic, both of which have been used for tests…
Descriptors: Test Format, Goodness of Fit, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Jing; Stokes, S. Lynne; Zhang, Song – Journal of Educational and Behavioral Statistics, 2010
We develop a Bayesian hierarchical model for the analysis of ordinal data from multirater ranking studies. The model for a rater's score includes four latent factors: one is a latent item trait determining the true order of items and the other three are the rater's performance characteristics, including bias, discrimination, and measurement error…
Descriptors: Bayesian Statistics, Data Analysis, Bias, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Rotondi, Michael A.; Donner, Allan – Journal of Educational and Behavioral Statistics, 2009
The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…
Descriptors: Sample Size, Computation, Correlation, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2