NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Beasley, T. Mark – Journal of Experimental Education, 2014
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Descriptors: Statistical Analysis, Effect Size, Nonparametric Statistics, Statistical Inference
Peer reviewed Peer reviewed
MacDonald, Paul – Journal of Experimental Education, 1999
Assessed the relative merits of the Student "t" test and the Wilcoxon rank sum test under four population distributions and six sample-size pairings through Monte Carlo methods. The Wilcoxon rank sum test demonstrated an advantage in statistical power for nonnormal distributions (but not normal distributions), with fewer Type III errors…
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Simulation
Peer reviewed Peer reviewed
Penfield, Douglas A. – Journal of Experimental Education, 1994
Type I error rate and power for the t test, Wilcoxon-Mann-Whitney test, van der Waerden Normal Scores, and Welch-Aspin-Satterthwaite (W) test are compared for two simulated independent random samples from nonnormal distributions. Conditions under which the t test and W test are best to use are discussed. (SLD)
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Sample Size