Publication Date
In 2025 | 0 |
Since 2024 | 11 |
Since 2021 (last 5 years) | 24 |
Since 2016 (last 10 years) | 56 |
Since 2006 (last 20 years) | 62 |
Descriptor
Simulation | 62 |
Meta Analysis | 55 |
Comparative Analysis | 26 |
Medical Research | 26 |
Outcomes of Treatment | 22 |
Models | 17 |
Bayesian Statistics | 16 |
Error of Measurement | 13 |
Intervals | 13 |
Correlation | 11 |
Accuracy | 10 |
More ▼ |
Source
Research Synthesis Methods | 62 |
Author
Jackson, Dan | 6 |
Higgins, Julian P. T. | 5 |
Veroniki, Areti Angeliki | 5 |
Bowden, Jack | 4 |
Kieser, Meinhard | 4 |
Kuss, Oliver | 4 |
Langan, Dean | 4 |
Viechtbauer, Wolfgang | 4 |
Jensen, Katrin | 3 |
Salanti, Georgia | 3 |
Baker, Rose | 2 |
More ▼ |
Publication Type
Journal Articles | 62 |
Reports - Research | 45 |
Information Analyses | 12 |
Reports - Descriptive | 7 |
Reports - Evaluative | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Landan Zhang; Sylwia Bujkiewicz; Dan Jackson – Research Synthesis Methods, 2024
Simulated treatment comparison (STC) is an established method for performing population adjustment for the indirect comparison of two treatments, where individual patient data (IPD) are available for one trial but only aggregate level information is available for the other. The most commonly used method is what we call 'standard STC'. Here we fit…
Descriptors: Simulation, Patients, Outcomes of Treatment, Comparative Analysis
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Hans-Peter Piepho; Johannes Forkman; Waqas Ahmed Malik – Research Synthesis Methods, 2024
Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for…
Descriptors: Maximum Likelihood Statistics, Evidence, Networks, Meta Analysis
Brinley N. Zabriskie; Nolan Cole; Jacob Baldauf; Craig Decker – Research Synthesis Methods, 2024
Meta-analyses have become the gold standard for synthesizing evidence from multiple clinical trials, and they are especially useful when outcomes are rare or adverse since individual trials often lack sufficient power to detect a treatment effect. However, when zero events are observed in one or both treatment arms in a trial, commonly used…
Descriptors: Meta Analysis, Error Correction, Computation, Simulation
Guido Schwarzer; Gerta Rücker; Cristina Semaca – Research Synthesis Methods, 2024
The "LFK" index has been promoted as an improved method to detect bias in meta-analysis. Putatively, its performance does not depend on the number of studies in the meta-analysis. We conducted a simulation study, comparing the "LFK" index test to three standard tests for funnel plot asymmetry in settings with smaller or larger…
Descriptors: Bias, Meta Analysis, Simulation, Evaluation Methods
Ferdinand Valentin Stoye; Claudia Tschammler; Oliver Kuss; Annika Hoyer – Research Synthesis Methods, 2024
The development of new statistical models for the meta-analysis of diagnostic test accuracy studies is still an ongoing field of research, especially with respect to summary receiver operating characteristic (ROC) curves. In the recently published updated version of the "Cochrane Handbook for Systematic Reviews of Diagnostic Test…
Descriptors: Diagnostic Tests, Accuracy, Barriers, Models
Suzanne C. Freeman; Alex J. Sutton; Nicola J. Cooper; Alessandro Gasparini; Michael J. Crowther; Neil Hawkins – Research Synthesis Methods, 2024
Background: Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The…
Descriptors: Cancer, Medical Research, Bayesian Statistics, Meta Analysis
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Shu, Di; Li, Xiaojuan; Her, Qoua; Wong, Jenna; Li, Dongdong; Wang, Rui; Toh, Sengwee – Research Synthesis Methods, 2023
Missing data complicates statistical analyses in multi-site studies, especially when it is not feasible to centrally pool individual-level data across sites. We combined meta-analysis with within-site multiple imputation for one-step estimation of the average causal effect (ACE) of a target population comprised of all individuals from all…
Descriptors: Meta Analysis, Outcomes of Treatment, Privacy, Attribution Theory
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Ziren Jiang; Joseph C. Cappelleri; Margaret Gamalo; Yong Chen; Neal Thomas; Haitao Chu – Research Synthesis Methods, 2024
Population-adjusted indirect comparison (PAIC) is an increasingly used technique for estimating the comparative effectiveness of different treatments for the health technology assessments when head-to-head trials are unavailable. Three commonly used PAIC methods include matching-adjusted indirect comparison (MAIC), simulated treatment comparison…
Descriptors: Comparative Analysis, Decision Making, Health Services, Computer Oriented Programs
van Aert, Robbie C. M. – Research Synthesis Methods, 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated.…
Descriptors: Correlation, Meta Analysis, Sampling, Simulation
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Cheng, David; Tchetgen, Eric Tchetgen; Signorovitch, James – Research Synthesis Methods, 2023
Matching-adjusted indirect comparison (MAIC) enables indirect comparisons of interventions across separate studies when individual patient-level data (IPD) are available for only one study. Due to its similarity with propensity score weighting, it has been speculated that MAIC can be combined with outcome regression models in the spirit of…
Descriptors: Comparative Analysis, Robustness (Statistics), Intervention, Patients
Shijie Ren; Sa Ren; Nicky J. Welton; Mark Strong – Research Synthesis Methods, 2024
Population-adjusted indirect comparisons, developed in the 2010s, enable comparisons between two treatments in different studies by balancing patient characteristics in the case where individual patient-level data (IPD) are available for only one study. Health technology assessment (HTA) bodies increasingly rely on these methods to inform funding…
Descriptors: Medical Research, Outcomes of Treatment, Standards, Safety