Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 7 |
Descriptor
Adaptive Testing | 27 |
Bayesian Statistics | 27 |
Simulation | 27 |
Computer Assisted Testing | 21 |
Test Items | 13 |
Estimation (Mathematics) | 10 |
Item Response Theory | 8 |
Item Banks | 7 |
Maximum Likelihood Statistics | 7 |
Ability | 6 |
Test Construction | 6 |
More ▼ |
Source
Applied Psychological… | 5 |
Journal of Educational and… | 2 |
Educational Technology &… | 1 |
Educational and Psychological… | 1 |
Journal of Educational… | 1 |
Psicologica: International… | 1 |
Psychometrika | 1 |
Author
Publication Type
Reports - Evaluative | 13 |
Journal Articles | 12 |
Reports - Research | 12 |
Speeches/Meeting Papers | 6 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Location
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Law School Admission Test | 2 |
Armed Services Vocational… | 1 |
COMPASS (Computer Assisted… | 1 |
What Works Clearinghouse Rating
Chen, Ping – Journal of Educational and Behavioral Statistics, 2017
Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…
Descriptors: Test Items, Item Response Theory, Test Construction, Adaptive Testing
Wang, Wen-Chung; Liu, Chen-Wei; Wu, Shiu-Lien – Applied Psychological Measurement, 2013
The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs…
Descriptors: Computer Assisted Testing, Adaptive Testing, Models, Bayesian Statistics
Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min – Educational Technology & Society, 2012
In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…
Descriptors: Adaptive Testing, Test Items, Computer Assisted Testing, Mathematics
Veldkamp, Bernard P. – Psicologica: International Journal of Methodology and Experimental Psychology, 2010
Application of Bayesian item selection criteria in computerized adaptive testing might result in improvement of bias and MSE of the ability estimates. The question remains how to apply Bayesian item selection criteria in the context of constrained adaptive testing, where large numbers of specifications have to be taken into account in the item…
Descriptors: Selection, Criteria, Bayesian Statistics, Computer Assisted Testing
Finkelman, Matthew David – Applied Psychological Measurement, 2010
In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…
Descriptors: Mastery Tests, Computer Assisted Testing, Adaptive Testing, Test Length
van der Linden, Wim J. – Applied Psychological Measurement, 2009
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Descriptors: Simulation, Adaptive Testing, Vocational Aptitude, Bayesian Statistics
Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R. – Educational and Psychological Measurement, 2006
The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…
Descriptors: Classification, Computation, Simulation, Item Response Theory
Smith, Robert L.; Rizavi, Saba; Paez, Roxanna; Rotou, Ourania – 2002
A study was conducted to investigate whether augmenting the calibration of items using computerized adaptive test (CAT) data matrices produced estimates that were unbiased and improved the stability of existing item parameter estimates. Item parameter estimates from four pools of items constructed for operational use were used in the study to…
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Estimation (Mathematics)

McLeod, Lori; Lewis, Charles; Thissen, David – Applied Psychological Measurement, 2003
Explored procedures to detect test takers using item preknowledge in computerized adaptive testing and suggested a Bayesian posterior log odds ratio index for this purpose. Simulation results support the use of the odds ratio index. (SLD)
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Knowledge Level
Zwick, Rebecca; Thayer, Dorothy T. – 2003
This study investigated the applicability to computerized adaptive testing (CAT) data of a differential item functioning (DIF) analysis that involves an empirical Bayes (EB) enhancement of the popular Mantel Haenszel (MH) DIF analysis method. The computerized Law School Admission Test (LSAT) assumed for this study was similar to that currently…
Descriptors: Adaptive Testing, Bayesian Statistics, College Entrance Examinations, Computer Assisted Testing
Glas, Cees A. W.; Vos, Hans J. – 1998
A version of sequential mastery testing is studied in which response behavior is modeled by an item response theory (IRT) model. First, a general theoretical framework is sketched that is based on a combination of Bayesian sequential decision theory and item response theory. A discussion follows on how IRT based sequential mastery testing can be…
Descriptors: Adaptive Testing, Bayesian Statistics, Item Response Theory, Mastery Tests

Wang, Tianyou; Vispoel, Walter P. – Journal of Educational Measurement, 1998
Used simulations of computerized adaptive tests to evaluate results yielded by four commonly used ability estimation methods: maximum likelihood estimation (MLE) and three Bayesian approaches. Results show clear distinctions between MLE and Bayesian methods. (SLD)
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing

Nicewander, W. Alan; Thomasson, Gary L. – Applied Psychological Measurement, 1999
Derives three reliability estimates for the Bayes modal estimate (BME) and the maximum-likelihood estimate (MLE) of theta in computerized adaptive tests (CATs). Computes the three reliability estimates and the true reliabilities of both BME and MLE for seven simulated CATs. Results show the true reliabilities for BME and MLE to be nearly identical…
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing

Berger, Martijn P. F.; Veerkamp, Wim J. J. – Journal of Educational and Behavioral Statistics, 1997
Some alternative criteria for item selection in adaptive testing are proposed that take into account uncertainty in the ability estimates. A simulation study shows that the likelihood weighted information criterion is a good alternative to the maximum information criterion. Another good alternative uses a Bayesian expected a posteriori estimator.…
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
Zwick, Rebecca – 1995
This paper describes a study, now in progress, of new methods for representing the sampling variability of Mantel-Haenszel differential item functioning (DIF) results, based on the system for categorizing the severity of DIF that is now in place at the Educational Testing Service. The methods, which involve a Bayesian elaboration of procedures…
Descriptors: Adaptive Testing, Bayesian Statistics, Classification, Computer Assisted Testing
Previous Page | Next Page ยป
Pages: 1 | 2