NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chance, Beth; Tintle, Nathan; Reynolds, Shea; Patel, Ajay; Chan, Katherine; Leader, Sean – Statistics Education Research Journal, 2022
Using simulation-based inference (SBI), such as randomization tests, as the primary vehicle for introducing students to the logic and scope of statistical inference has been advocated with the potential of improving student understanding of statistical inference and the statistical investigative process. Moving beyond the individual class…
Descriptors: Mathematics Curriculum, Simulation, Student Characteristics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan – Statistics Education Research Journal, 2017
Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…
Descriptors: Introductory Courses, Statistics, Mathematics Instruction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Tintle, Nathan; Clark, Jake; Fischer, Karen; Chance, Beth; Cobb, George; Roy, Soma; Swanson, Todd; VanderStoep, Jill – Journal of Statistics Education, 2018
The recent simulation-based inference (SBI) movement in algebra-based introductory statistics courses (Stat 101) has provided preliminary evidence of improved student conceptual understanding and retention. However, little is known about whether these positive effects are preferentially distributed across types of students entering the course. We…
Descriptors: Statistics, College Mathematics, College Preparation, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Chance, Beth; Wong, Jimmy; Tintle, Nathan – Journal of Statistics Education, 2016
"Simulation-based inference" (e.g., bootstrapping and randomization tests) has been advocated recently with the goal of improving student understanding of statistical inference, as well as the statistical investigative process as a whole. Preliminary assessment data have been largely positive. This article describes the analysis of the…
Descriptors: Statistical Inference, Simulation, College Mathematics, Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McLean, Jeffrey A.; Doerr, Helen M. – North American Chapter of the International Group for the Psychology of Mathematics Education, 2015
This study focuses on the development of four tertiary introductory statistics students' informal inferential reasoning while engaging in data driven repeated sampling and resampling activities. Through the use of hands-on manipulatives and simulations with technology, the participants constructed empirical sampling distributions in order to…
Descriptors: College Mathematics, College Students, Statistics, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Mulekar, Madhuri S.; Siegel, Murray H. – Mathematics Teacher, 2009
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Descriptors: Statistical Inference, Statistics, Sample Size, Error of Measurement