Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 15 |
Descriptor
Correlation | 17 |
Simulation | 17 |
Test Length | 17 |
Item Response Theory | 10 |
Sample Size | 10 |
Test Items | 10 |
Models | 7 |
Comparative Analysis | 5 |
Evaluation Methods | 4 |
Computer Assisted Testing | 3 |
Evaluation Research | 3 |
More ▼ |
Source
Author
Ackerman, Terry | 1 |
Brown, Joel M. | 1 |
Chen, Shyh-Huei | 1 |
Chien, Yuehmei | 1 |
Choi, Youn-Jeng | 1 |
Chou, Yeh-Tai | 1 |
Cui, Ying | 1 |
Feng, Yuling | 1 |
Foley, Brett Patrick | 1 |
Fu, Jianbin | 1 |
Fu, Yanyan | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 10 |
Reports - Evaluative | 4 |
Dissertations/Theses -… | 3 |
Speeches/Meeting Papers | 3 |
Education Level
Elementary Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Guo, Wenjing; Choi, Youn-Jeng – Educational and Psychological Measurement, 2023
Determining the number of dimensions is extremely important in applying item response theory (IRT) models to data. Traditional and revised parallel analyses have been proposed within the factor analysis framework, and both have shown some promise in assessing dimensionality. However, their performance in the IRT framework has not been…
Descriptors: Item Response Theory, Evaluation Methods, Factor Analysis, Guidelines
Novak, Josip; Rebernjak, Blaž – Measurement: Interdisciplinary Research and Perspectives, 2023
A Monte Carlo simulation study was conducted to examine the performance of [alpha], [lambda]2, [lambda][subscript 4], [lambda][subscript 2], [omega][subscript T], GLB[subscript MRFA], and GLB[subscript Algebraic] coefficients. Population reliability, distribution shape, sample size, test length, and number of response categories were varied…
Descriptors: Monte Carlo Methods, Evaluation Methods, Reliability, Simulation
Fu, Yanyan; Strachan, Tyler; Ip, Edward H.; Willse, John T.; Chen, Shyh-Huei; Ackerman, Terry – International Journal of Testing, 2020
This research examined correlation estimates between latent abilities when using the two-dimensional and three-dimensional compensatory and noncompensatory item response theory models. Simulation study results showed that the recovery of the latent correlation was best when the test contained 100% of simple structure items for all models and…
Descriptors: Item Response Theory, Models, Test Items, Simulation
Kiliç, Abdullah Faruk; Uysal, Ibrahim – Turkish Journal of Education, 2019
In this study, the purpose is to compare factor retention methods under simulation conditions. For this purpose, simulations conditions with a number of factors (1, 2 [simple]), sample sizes (250, 1.000, and 3.000), number of items (20, 30), average factor loading (0.50, 0.70), and correlation matrix (Pearson Product Moment [PPM] and Tetrachoric)…
Descriptors: Simulation, Factor Structure, Sample Size, Test Length
Kárász, Judit T.; Széll, Krisztián; Takács, Szabolcs – Quality Assurance in Education: An International Perspective, 2023
Purpose: Based on the general formula, which depends on the length and difficulty of the test, the number of respondents and the number of ability levels, this study aims to provide a closed formula for the adaptive tests with medium difficulty (probability of solution is p = 1/2) to determine the accuracy of the parameters for each item and in…
Descriptors: Test Length, Probability, Comparative Analysis, Difficulty Level
Fu, Jianbin; Feng, Yuling – ETS Research Report Series, 2018
In this study, we propose aggregating test scores with unidimensional within-test structure and multidimensional across-test structure based on a 2-level, 1-factor model. In particular, we compare 6 score aggregation methods: average of standardized test raw scores (M1), regression factor score estimate of the 1-factor model based on the…
Descriptors: Comparative Analysis, Scores, Correlation, Standardized Tests
Zheng, Chunmei – ProQuest LLC, 2013
Educational and psychological constructs are normally measured by multifaceted dimensions. The measured construct is defined and measured by a set of related subdomains. A bifactor model can accurately describe such data with both the measured construct and the related subdomains. However, a limitation of the bifactor model is the orthogonality…
Descriptors: Educational Testing, Measurement Techniques, Test Items, Models
Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas – Educational and Psychological Measurement, 2014
An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…
Descriptors: Sampling, Test Items, Effect Size, Scaling
Lee, Eunjung – ProQuest LLC, 2013
The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…
Descriptors: Equated Scores, Tests, Comparative Analysis, Item Response Theory
Li, Ying; Rupp, Andre A. – Educational and Psychological Measurement, 2011
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
Descriptors: Test Length, Item Response Theory, Statistical Analysis, Error Patterns
Chou, Yeh-Tai; Wang, Wen-Chung – Educational and Psychological Measurement, 2010
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
Descriptors: Test Length, Sample Size, Correlation, Item Response Theory
Shin, Chingwei David; Chien, Yuehmei; Way, Walter Denny – Pearson, 2012
Content balancing is one of the most important components in the computerized adaptive testing (CAT) especially in the K to 12 large scale tests that complex constraint structure is required to cover a broad spectrum of content. The purpose of this study is to compare the weighted penalty model (WPM) and the weighted deviation method (WDM) under…
Descriptors: Computer Assisted Testing, Elementary Secondary Education, Test Content, Models
Foley, Brett Patrick – ProQuest LLC, 2010
The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using…
Descriptors: Test Length, Sample Size, Simulation, Item Response Theory
de la Torre, Jimmy; Song, Hao – Applied Psychological Measurement, 2009
Assessments consisting of different domains (e.g., content areas, objectives) are typically multidimensional in nature but are commonly assumed to be unidimensional for estimation purposes. The different domains of these assessments are further treated as multi-unidimensional tests for the purpose of obtaining diagnostic information. However, when…
Descriptors: Ability, Tests, Item Response Theory, Data Analysis
Cui, Ying; Leighton, Jacqueline P. – Journal of Educational Measurement, 2009
In this article, we introduce a person-fit statistic called the hierarchy consistency index (HCI) to help detect misfitting item response vectors for tests developed and analyzed based on a cognitive model. The HCI ranges from -1.0 to 1.0, with values close to -1.0 indicating that students respond unexpectedly or differently from the responses…
Descriptors: Test Length, Simulation, Correlation, Research Methodology
Previous Page | Next Page »
Pages: 1 | 2