Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Structural Equation Modeling:… | 2 |
Grantee Submission | 1 |
Journal of Educational and… | 1 |
Online Submission | 1 |
Society for Research on… | 1 |
Author
Dongho Shin | 1 |
Feller, Avi | 1 |
Han Du | 1 |
Hao Wu | 1 |
McGivern, Lucinda | 1 |
Miratrix, Luke | 1 |
Mohammad, Nagham | 1 |
Pati, Debdeep | 1 |
Pillai, Natesh | 1 |
Raykov, Tenko | 1 |
Smithson, Michael | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Reports - Descriptive | 2 |
Dissertations/Theses -… | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Mohammad, Nagham; McGivern, Lucinda – Online Submission, 2020
In regression analysis courses, there are many settings in which the response variable under study is continuous, strictly positive, and right skew. This type of response variable does not adhere to the normality assumptions underlying the traditional linear regression model, and accordingly may be analyzed using a generalized linear model…
Descriptors: Regression (Statistics), Statistical Distributions, Simulation, Data Analysis
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models