NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stefanie A. Wind; Benjamin Lugu – Applied Measurement in Education, 2024
Researchers who use measurement models for evaluation purposes often select models with stringent requirements, such as Rasch models, which are parametric. Mokken Scale Analysis (MSA) offers a theory-driven nonparametric modeling approach that may be more appropriate for some measurement applications. Researchers have discussed using MSA as a…
Descriptors: Item Response Theory, Data Analysis, Simulation, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lathrop, Quinn N.; Cheng, Ying – Journal of Educational Measurement, 2014
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Descriptors: Cutting Scores, Classification, Computation, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Tendeiro, Jorge N.; Meijer, Rob R. – Journal of Educational Measurement, 2014
In recent guidelines for fair educational testing it is advised to check the validity of individual test scores through the use of person-fit statistics. For practitioners it is unclear on the basis of the existing literature which statistic to use. An overview of relatively simple existing nonparametric approaches to identify atypical response…
Descriptors: Educational Assessment, Test Validity, Scores, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hooper, Jay; Cowell, Ryan – Educational Assessment, 2014
There has been much research and discussion on the principles of standards-based grading, and there is a growing consensus of best practice. Even so, the actual process of implementing standards-based grading at a school or district level can be a significant challenge. There are very practical questions that remain unclear, such as how the grades…
Descriptors: True Scores, Grading, Academic Standards, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Si, Yajuan; Reiter, Jerome P. – Journal of Educational and Behavioral Statistics, 2013
In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Measurement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ryden, Jesper – International Journal of Mathematical Education in Science and Technology, 2008
Extreme-value statistics is often used to estimate so-called return values (actually related to quantiles) for environmental quantities like wind speed or wave height. A basic method for estimation is the method of block maxima which consists in partitioning observations in blocks, where maxima from each block could be considered independent.…
Descriptors: Simulation, Probability, Computation, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wells, Craig S.; Bolt, Daniel M. – Applied Measurement in Education, 2008
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Descriptors: Test Length, Test Items, Monte Carlo Methods, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Young-Sun – Applied Psychological Measurement, 2007
This study compares the performance of three nonparametric item characteristic curve (ICC) estimation procedures: isotonic regression, smoothed isotonic regression, and kernel smoothing. Smoothed isotonic regression, employed along with an appropriate kernel function, provides better estimates and also satisfies the assumption of strict…
Descriptors: Nonparametric Statistics, Computation, Item Response Theory, Evaluation Methods
Pyo, Kyong Hyon – 2000
The primary purpose of this study was to compare the performance of three procedures to assess dimensionality that were investigated by R. Nandakumar (1994) at different test conditions to reflect the characteristics of language test data. Procedures investigated were nonlinear factor analysis, the procedure of P. Holland and P. Rosenbaum, and W.…
Descriptors: Evaluation Methods, Factor Analysis, Language Tests, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Matthew S. – Psychometrika, 2006
Unlike their monotone counterparts, nonparametric unfolding response models, which assume the item response function is unimodal, have seen little attention in the psychometric literature. This paper studies the nonparametric behavior of unfolding models by building on the work of Post (1992). The paper provides rigorous justification for a class…
Descriptors: Psychometrics, Nonparametric Statistics, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Xueli; Douglas, Jeff – Psychometrika, 2006
Nonparametric item response models have been developed as alternatives to the relatively inflexible parametric item response models. An open question is whether it is possible and practical to administer computerized adaptive testing with nonparametric models. This paper explores the possibility of computerized adaptive testing when using…
Descriptors: Simulation, Nonparametric Statistics, Item Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Gierl, Mark J.; Leighton, Jacqueline P.; Tan, Xuan – Journal of Educational Measurement, 2006
DETECT, the acronym for Dimensionality Evaluation To Enumerate Contributing Traits, is an innovative and relatively new nonparametric dimensionality assessment procedure used to identify mutually exclusive, dimensionally homogeneous clusters of items using a genetic algorithm ( Zhang & Stout, 1999). Because the clusters of items are mutually…
Descriptors: Program Evaluation, Cluster Grouping, Evaluation Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Roussos, Louis A.; Ozbek, Ozlem Yesim – Journal of Educational Measurement, 2006
The development of the DETECT procedure marked an important advancement in nonparametric dimensionality analysis. DETECT is the first nonparametric technique to estimate the number of dimensions in a data set, estimate an effect size for multidimensionality, and identify which dimension is predominantly measured by each item. The efficacy of…
Descriptors: Evaluation Methods, Effect Size, Test Bias, Item Response Theory
Olejnik, Stephen F.; Algina, James – 1986
Sampling distributions for ten tests for comparing population variances in a two group design were generated for several combinations of equal and unequal sample sizes, population means, and group variances when distributional forms differed. The ten procedures included: (1) O'Brien's (OB); (2) O'Brien's with adjusted degrees of freedom; (3)…
Descriptors: Error of Measurement, Evaluation Methods, Measurement Techniques, Nonparametric Statistics