NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Svetina, Dubravka; Liaw, Yuan-Ling; Rutkowski, Leslie; Rutkowski, David – Journal of Educational Measurement, 2019
This study investigates the effect of several design and administration choices on item exposure and person/item parameter recovery under a multistage test (MST) design. In a simulation study, we examine whether number-correct (NC) or item response theory (IRT) methods are differentially effective at routing students to the correct next stage(s)…
Descriptors: Measurement, Item Analysis, Test Construction, Item Response Theory
Samonte, Kelli Marie – ProQuest LLC, 2017
Longitudinal data analysis assumes that scales meet the assumption of longitudinal measurement invariance (i.e., that scales function equivalently across measurement occasions). This simulation study examines the impact of violations to the assumption of longitudinal measurement invariance on growth models and whether modeling the invariance…
Descriptors: Test Bias, Growth Models, Longitudinal Studies, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Chun; Chang, Hua-Hua; Boughton, Keith A. – Applied Psychological Measurement, 2013
Multidimensional computerized adaptive testing (MCAT) is able to provide a vector of ability estimates for each examinee, which could be used to provide a more informative profile of an examinee's performance. The current literature on MCAT focuses on the fixed-length tests, which can generate less accurate results for those examinees whose…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Length, Item Banks
Peer reviewed Peer reviewed
Direct linkDirect link
Kruyen, Peter M.; Emons, Wilco H. M.; Sijtsma, Klaas – International Journal of Testing, 2012
Personnel selection shows an enduring need for short stand-alone tests consisting of, say, 5 to 15 items. Despite their efficiency, short tests are more vulnerable to measurement error than longer test versions. Consequently, the question arises to what extent reducing test length deteriorates decision quality due to increased impact of…
Descriptors: Measurement, Personnel Selection, Decision Making, Error of Measurement
Shin, Chingwei David; Chien, Yuehmei; Way, Walter Denny – Pearson, 2012
Content balancing is one of the most important components in the computerized adaptive testing (CAT) especially in the K to 12 large scale tests that complex constraint structure is required to cover a broad spectrum of content. The purpose of this study is to compare the weighted penalty model (WPM) and the weighted deviation method (WDM) under…
Descriptors: Computer Assisted Testing, Elementary Secondary Education, Test Content, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods
Kim, Jihye – ProQuest LLC, 2010
In DIF studies, a Type I error refers to the mistake of identifying non-DIF items as DIF items, and a Type I error rate refers to the proportion of Type I errors in a simulation study. The possibility of making a Type I error in DIF studies is always present and high possibility of making such an error can weaken the validity of the assessment.…
Descriptors: Test Bias, Test Length, Simulation, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Cui, Ying; Leighton, Jacqueline P. – Journal of Educational Measurement, 2009
In this article, we introduce a person-fit statistic called the hierarchy consistency index (HCI) to help detect misfitting item response vectors for tests developed and analyzed based on a cognitive model. The HCI ranges from -1.0 to 1.0, with values close to -1.0 indicating that students respond unexpectedly or differently from the responses…
Descriptors: Test Length, Simulation, Correlation, Research Methodology