Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Error of Measurement | 5 |
Medical Research | 5 |
Meta Analysis | 5 |
Simulation | 5 |
Comparative Analysis | 4 |
Outcomes of Treatment | 4 |
Bayesian Statistics | 2 |
Correlation | 2 |
Guidelines | 2 |
Models | 2 |
Patients | 2 |
More ▼ |
Source
Research Synthesis Methods | 5 |
Author
Carlin, Bradley P. | 1 |
Chu, Haitao | 1 |
Clark, Allan | 1 |
Dogo, Samson Henry | 1 |
Hong, Hwanhee | 1 |
Kieser, Meinhard | 1 |
Kontopantelis, Evangelos | 1 |
Kulinskaya, Elena | 1 |
Miocevic, Milica | 1 |
Proctor, Tanja | 1 |
Seide, Svenja | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Proctor, Tanja; Zimmermann, Samuel; Seide, Svenja; Kieser, Meinhard – Research Synthesis Methods, 2022
During drug development, a biomarker is sometimes identified as separating a patient population into those with more and those with less benefit from evaluated treatments. Consequently, later studies might be targeted, while earlier ones are performed in mixed patient populations. This poses a challenge in evidence synthesis, especially if only…
Descriptors: Comparative Analysis, Meta Analysis, Patients, Medical Research
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Kontopantelis, Evangelos – Research Synthesis Methods, 2018
Background: Individual patient data (IPD) meta-analysis allows for the exploration of heterogeneity and can identify subgroups that most benefit from an intervention (or exposure), much more successfully than meta-analysis of aggregate data. One-stage or two-stage IPD meta-analysis is possible, with the former using mixed-effects regression models…
Descriptors: Patients, Medical Research, Meta Analysis, Intervention
Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena – Research Synthesis Methods, 2017
Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted…
Descriptors: Effect Size, Meta Analysis, Visualization, Error of Measurement
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P. – Research Synthesis Methods, 2016
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Descriptors: Bayesian Statistics, Meta Analysis, Outcomes of Treatment, Comparative Analysis