NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers5
Laws, Policies, & Programs
Assessments and Surveys
Cognitive Abilities Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 50 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Levin, Joel R.; Ferron, John M.; Gafurov, Boris S. – Journal of Education for Students Placed at Risk, 2022
The present simulation study examined the statistical properties (namely, Type I error and statistical power) of various novel randomized single-case multiple-baseline designs and associated randomized-test analyses for comparing the A- to B-phase immediate abrupt outcome changes in two independent intervention conditions. It was found that with…
Descriptors: Statistical Analysis, Error of Measurement, Intervention, Program Effectiveness
Kazuki Hori – ProQuest LLC, 2021
Educational researchers are often interested in phenomena that unfold over time within a person and at the same time, relationships between their characteristics that are stable over time. Since variables in a longitudinal study reflect both within- and between-person effects, researchers need to disaggregate them to understand the phenomenon of…
Descriptors: Time, Structural Equation Models, Monte Carlo Methods, Simulation
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2024
Longitudinal models of individual growth typically emphasize between-person predictors of change but ignore how growth may vary "within" persons because each person contributes only one point at each time to the model. In contrast, modeling growth with multi-item assessments allows evaluation of how relative item performance may shift…
Descriptors: Vocabulary Development, Item Response Theory, Test Items, Student Development
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Applied Measurement in Education, 2024
Longitudinal models typically emphasize between-person predictors of change but ignore how growth varies "within" persons because each person contributes only one data point at each time. In contrast, modeling growth with multi-item assessments allows evaluation of how relative item performance may shift over time. While traditionally…
Descriptors: Vocabulary Development, Item Response Theory, Test Items, Student Development
Fan Pan – ProQuest LLC, 2021
This dissertation informed researchers about the performance of different level-specific and target-specific model fit indices in Multilevel Latent Growth Model (MLGM) using unbalanced design and different trajectories. As the use of MLGMs is a relatively new field, this study helped further the field by informing researchers interested in using…
Descriptors: Goodness of Fit, Item Response Theory, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tsaousis, Ioannis; Sideridis, Georgios D.; AlGhamdi, Hannan M. – Journal of Psychoeducational Assessment, 2021
This study evaluated the psychometric quality of a computerized adaptive testing (CAT) version of the general cognitive ability test (GCAT), using a simulation study protocol put forth by Han, K. T. (2018a). For the needs of the analysis, three different sets of items were generated, providing an item pool of 165 items. Before evaluating the…
Descriptors: Computer Assisted Testing, Adaptive Testing, Cognitive Tests, Cognitive Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, HyeSun; Smith, Weldon Z. – Educational and Psychological Measurement, 2020
Based on the framework of testlet models, the current study suggests the Bayesian random block item response theory (BRB IRT) model to fit forced-choice formats where an item block is composed of three or more items. To account for local dependence among items within a block, the BRB IRT model incorporated a random block effect into the response…
Descriptors: Bayesian Statistics, Item Response Theory, Monte Carlo Methods, Test Format
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Olivera-Aguilar, Margarita; Rikoon, Samuel H.; Gonzalez, Oscar; Kisbu-Sakarya, Yasemin; MacKinnon, David P. – Educational and Psychological Measurement, 2018
When testing a statistical mediation model, it is assumed that factorial measurement invariance holds for the mediating construct across levels of the independent variable X. The consequences of failing to address the violations of measurement invariance in mediation models are largely unknown. The purpose of the present study was to…
Descriptors: Error of Measurement, Statistical Analysis, Factor Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Ming; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Descriptors: Simulation, Comparative Analysis, Monte Carlo Methods, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2016
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Computation, Statistical Bias
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4