NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Si, Yajuan; Reiter, Jerome P. – Journal of Educational and Behavioral Statistics, 2013
In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Measurement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E. – Journal of Statistics Education, 2010
Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…
Descriptors: Statistical Distributions, Hypothesis Testing, Relationship, Statistical Significance
Peer reviewed Peer reviewed
Toothaker, Larry E.; Newman, De – Journal of Educational and Behavioral Statistics, 1994
Compared the analysis of variance (ANOVA) "F" and several nonparametric competitors for two-way designs for empirical alpha and power through simulation. Results suggest the ANOVA "F" suffers from conservative alpha and power for the mixed normal distribution, but is generally recommended. (Author/SLD)
Descriptors: Analysis of Variance, Nonparametric Statistics, Simulation, Statistical Distributions
Peer reviewed Peer reviewed
MacDonald, Paul – Journal of Experimental Education, 1999
Assessed the relative merits of the Student "t" test and the Wilcoxon rank sum test under four population distributions and six sample-size pairings through Monte Carlo methods. The Wilcoxon rank sum test demonstrated an advantage in statistical power for nonnormal distributions (but not normal distributions), with fewer Type III errors…
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Simulation
Peer reviewed Peer reviewed
Penfield, Douglas A. – Journal of Experimental Education, 1994
Type I error rate and power for the t test, Wilcoxon-Mann-Whitney test, van der Waerden Normal Scores, and Welch-Aspin-Satterthwaite (W) test are compared for two simulated independent random samples from nonnormal distributions. Conditions under which the t test and W test are best to use are discussed. (SLD)
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Sample Size
Nandakumar, Ratna; Yu, Feng – 1994
DIMTEST is a statistical test procedure for assessing essential unidimensionality of binary test item responses. The test statistic T used for testing the null hypothesis of essential unidimensionality is a nonparametric statistic. That is, there is no particular parametric distribution assumed for the underlying ability distribution or for the…
Descriptors: Ability, Content Validity, Correlation, Nonparametric Statistics