NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Germany1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Kazuki Hori – ProQuest LLC, 2021
Educational researchers are often interested in phenomena that unfold over time within a person and at the same time, relationships between their characteristics that are stable over time. Since variables in a longitudinal study reflect both within- and between-person effects, researchers need to disaggregate them to understand the phenomenon of…
Descriptors: Time, Structural Equation Models, Monte Carlo Methods, Simulation
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Cain, Meghan K.; Zhang, Zhiyong; Bergeman, C. S. – Educational and Psychological Measurement, 2018
This article serves as a practical guide to mediation design and analysis by evaluating the ability of mediation models to detect a significant mediation effect using limited data. The cross-sectional mediation model, which has been shown to be biased when the mediation is happening over time, is compared with longitudinal mediation models:…
Descriptors: Mediation Theory, Case Studies, Longitudinal Studies, Measurement Techniques
Cain, Meghan K.; Zhang, Zhiyong; Bergeman, C.S. – Grantee Submission, 2018
This paper serves as a practical guide to mediation design and analysis by evaluating the ability of mediation models to detect a significant mediation effect using limited data. The cross-sectional mediation model, which has been shown to be biased when the mediation is happening over time, is compared to longitudinal mediation models:…
Descriptors: Mediation Theory, Case Studies, Longitudinal Studies, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Kern, Justin L.; McBride, Brent A.; Laxman, Daniel J.; Dyer, W. Justin; Santos, Rosa M.; Jeans, Laurie M. – Grantee Submission, 2016
Measurement invariance (MI) is a property of measurement that is often implicitly assumed, but in many cases, not tested. When the assumption of MI is tested, it generally involves determining if the measurement holds longitudinally or cross-culturally. A growing literature shows that other groupings can, and should, be considered as well.…
Descriptors: Psychology, Measurement, Error of Measurement, Measurement Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Moses, Tim – Journal of Educational Measurement, 2012
The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…
Descriptors: Error of Measurement, Prediction, Regression (Statistics), True Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Watkins, Ann E.; Bargagliotti, Anna; Franklin, Christine – Journal of Statistics Education, 2014
Although the use of simulation to teach the sampling distribution of the mean is meant to provide students with sound conceptual understanding, it may lead them astray. We discuss a misunderstanding that can be introduced or reinforced when students who intuitively understand that "bigger samples are better" conduct a simulation to…
Descriptors: Simulation, Sampling, Sample Size, Misconceptions
Lo, Yun-Jia – ProQuest LLC, 2012
In educational research, a randomized controlled trial is the best design to eliminate potential selection bias in a sample to support valid causal inferences, but it is not always possible in educational research because of financial, ethical, and logistical constrains. One alternative solution is use of the propensity score (PS) methods.…
Descriptors: Educational Research, Probability, Scores, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, Andre – Applied Psychological Measurement, 2013
The problem of factor score indeterminacy implies that the factor and the error scores cannot be completely disentangled in the factor model. It is therefore proposed to compute Harman's factor score predictor that contains an additive combination of factor and error variance. This additive combination is discussed in the framework of classical…
Descriptors: Factor Analysis, Predictor Variables, Reliability, Error of Measurement
Khawand, Christopher – Society for Research on Educational Effectiveness, 2012
Instrumental variables (IV) methods allow for consistent estimation of causal effects, but suffer from poor finite-sample properties and data availability constraints. IV estimates also tend to have relatively large standard errors, often inhibiting the interpretability of differences between IV and non-IV point estimates. Lastly, instrumental…
Descriptors: Least Squares Statistics, Labor Supply, Measurement Techniques, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williams, Matt N.; Gomez Grajales, Carlos Alberto; Kurkiewicz, Dason – Practical Assessment, Research & Evaluation, 2013
In 2002, an article entitled "Four assumptions of multiple regression that researchers should always test" by Osborne and Waters was published in "PARE." This article has gone on to be viewed more than 275,000 times (as of August 2013), and it is one of the first results displayed in a Google search for "regression…
Descriptors: Multiple Regression Analysis, Misconceptions, Reader Response, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Descriptors: Simulation, Computation, Evaluation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2