NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jinming; Li, Jie – Journal of Educational Measurement, 2016
An IRT-based sequential procedure is developed to monitor items for enhancing test security. The procedure uses a series of statistical hypothesis tests to examine whether the statistical characteristics of each item under inspection have changed significantly during CAT administration. This procedure is compared with a previously developed…
Descriptors: Computer Assisted Testing, Test Items, Difficulty Level, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…
Descriptors: Sample Size, Simulation, Factor Structure, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cui, Zhongmin; Kolen, Michael J. – Applied Psychological Measurement, 2008
This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…
Descriptors: Test Length, Test Content, Simulation, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidian, M.; Khatoonabadi, M. – International Journal of Mathematical Education in Science and Technology, 2007
Almost all introductory and intermediate level statistics textbooks include the topic of confidence interval for the population mean. Almost all these texts introduce the median as a robust measure of central tendency. Only a few of these books, however, cover inference on the population median and in particular confidence interval for the median.…
Descriptors: Intervals, Simulation, Computation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Mulekar, Madhuri S.; Siegel, Murray H. – Mathematics Teacher, 2009
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Descriptors: Statistical Inference, Statistics, Sample Size, Error of Measurement