Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Robustness (Statistics) | 9 |
Simulation | 9 |
Structural Equation Models | 9 |
Computation | 4 |
Error of Measurement | 4 |
Sample Size | 4 |
Maximum Likelihood Statistics | 3 |
Monte Carlo Methods | 3 |
Effect Size | 2 |
Factor Analysis | 2 |
Goodness of Fit | 2 |
More ▼ |
Source
Psychometrika | 2 |
Structural Equation Modeling:… | 2 |
Educational and Psychological… | 1 |
International Journal of… | 1 |
Journal of Educational and… | 1 |
Sociological Methods &… | 1 |
Structural Equation Modeling | 1 |
Author
Bogaert, Jasper | 1 |
Bollen, Kenneth A. | 1 |
Bowles, Ryan P. | 1 |
Browne, Matthew | 1 |
Clark, D. Angus | 1 |
Fan, Weihua | 1 |
Hancock, Gregory R. | 1 |
Hessen, David J. | 1 |
Hox, Joop J. | 1 |
Lai, Keke | 1 |
Loh, Wen Wei | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Evaluative | 4 |
Reports - Research | 4 |
Reports - Descriptive | 1 |
Education Level
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Clark, D. Angus; Nuttall, Amy K.; Bowles, Ryan P. – International Journal of Behavioral Development, 2021
Hybrid autoregressive-latent growth structural equation models for longitudinal data represent a synthesis of the autoregressive and latent growth modeling frameworks. Although these models are conceptually powerful, in practice they may struggle to separate autoregressive and growth-related processes during estimation. This confounding of change…
Descriptors: Structural Equation Models, Longitudinal Studies, Risk, Accuracy
Browne, Matthew; Rockloff, Matthew; Rawat, Vijay – Sociological Methods & Research, 2018
Development and refinement of self-report measures generally involves selecting a subset of indicators from a larger set. Despite the importance of this task, methods applied to accomplish this are often idiosyncratic and ad hoc, or based on incomplete statistical criteria. We describe a structural equation modeling (SEM)-based technique, based on…
Descriptors: Structural Equation Models, Scaling, Evaluation Criteria, Psychometrics
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Bollen, Kenneth A.; Maydeu-Olivares, Albert – Psychometrika, 2007
This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen's (Psychometrika 61:109-121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator…
Descriptors: Structural Equation Models, Simulation, Robustness (Statistics), Computation

Hox, Joop J.; Maas, Cora J. M. – Structural Equation Modeling, 2001
Assessed the robustness of an estimation method for multilevel and path analysis with hierarchical data proposed by B. Muthen (1989) with unequal groups and small sample sizes and in the presence of a low or high intraclass correlation. Simulation results show the effects of varying these conditions on the within-group and between-groups part of…
Descriptors: Estimation (Mathematics), Robustness (Statistics), Sample Size, Simulation
Ogasawara, Haruhiko – Psychometrika, 2004
Formulas for the asymptotic biases of the parameter estimates in structural equation models are provided in the case of the Wishart maximum likelihood estimation for normally and nonnormally distributed variables. When multivariate normality is satisfied, considerable simplification is obtained for the models of unstandardized variables. Formulas…
Descriptors: Evaluation Methods, Bias, Factor Analysis, Structural Equation Models