Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 9 |
Descriptor
Simulation | 9 |
Statistical Inference | 9 |
Structural Equation Models | 9 |
Computation | 6 |
Bayesian Statistics | 3 |
Error of Measurement | 3 |
Goodness of Fit | 3 |
Maximum Likelihood Statistics | 3 |
Comparative Analysis | 2 |
Probability | 2 |
Scores | 2 |
More ▼ |
Author
Bentler, Peter M. | 1 |
Cai, Li | 1 |
Chung, Seungwon | 1 |
Coffman, Donna L. | 1 |
Enders, Craig K. | 1 |
Gallitto, Elena | 1 |
Haiyan Liu | 1 |
Hao Wu | 1 |
Hau, Kit-Tai | 1 |
James Ohisei Uanhoro | 1 |
Jorgensen, Terrence D. | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Wen, Zhonglin; Marsh, Herbert W.; Hau, Kit-Tai – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Standardized parameter estimates are routinely used to summarize the results of multiple regression models of manifest variables and structural equation models of latent variables, because they facilitate interpretation. Although the typical standardization of interaction terms is not appropriate for multiple regression models, straightforward…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Interaction, Computation
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics