NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ding, Xinyi; Larson, Eric C. – International Educational Data Mining Society, 2019
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered, thus adjusting curriculum accordingly. Deep Knowledge Tracing (DKT) uses recurrent neural networks (RNNs) for knowledge tracing and has achieved significant improvements compared with models like Bayesian Knowledge Tracing (BKT) and…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moore, Russell; Caines, Andrew; Elliott, Mark; Zaidi, Ahmed; Rice, Andrew; Buttery, Paula – International Educational Data Mining Society, 2019
Educational systems use models of student skill to inform decision-making processes. Defining such models manually is challenging due to the large number of relevant factors. We propose learning multidimensional representations (embeddings) from student activity data -- these are fixed-length real vectors with three desirable characteristics:…
Descriptors: Models, Knowledge Representation, Skills, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Peng; Desmarais, Michel C. – International Educational Data Mining Society, 2018
In most contexts of student skills assessment, whether the test material is administered by the teacher or within a learning environment, there is a strong incentive to minimize the number of questions or exercises administered in order to get an accurate assessment. This minimization objective can be framed as a Q-matrix design problem: given a…
Descriptors: Test Items, Accuracy, Test Construction, Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy; Liew, Chun Wai – International Educational Data Mining Society, 2018
Recent works on Intelligent Tutoring Systems have focused on more complicated knowledge domains, which pose challenges in automated assessment of student performance. In particular, while the system can log every user action and keep track of the student's solution state, it is unable to determine the hidden intermediate steps leading to such…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Data Analysis, Error Patterns
Desmarais, Michel C.; Xu, Peng; Beheshti, Behzad – International Educational Data Mining Society, 2015
The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree…
Descriptors: Matrices, Test Items, Skills, Expertise
Matsuda, Noboru; Furukawa, Tadanobu; Bier, Norman; Faloutsos, Christos – International Educational Data Mining Society, 2015
How can we automatically determine which skills must be mastered for the successful completion of an online course? Large-scale online courses (e.g., MOOCs) often contain a broad range of contents frequently intended to be a semester's worth of materials; this breadth often makes it difficult to articulate an accurate set of skills and knowledge…
Descriptors: Online Courses, Skills, Automation, Models
Chen, Yang; Wuillemin, Pierre-Henr; Labat, Jean-Marc – International Educational Data Mining Society, 2015
Estimating the prerequisite structure of skills is a crucial issue in domain modeling. Students usually learn skills in sequence since the preliminary skills need to be learned prior to the complex skills. The prerequisite relations between skills underlie the design of learning sequence and adaptation strategies for tutoring systems. The…
Descriptors: Skills, Data Analysis, Students, Performance
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models