NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Location
Algeria1
Taiwan1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kassem Hallal; Sami Tlais – Journal of Chemical Education, 2023
Different molecular representations are usually used to depict the three-dimensional (3D) structure of organic compounds. Mastering the skill of interconverting one form into another is essential for students to ensure success in organic chemistry. The traditional and recently developed methods for completing such interconversions that rely on 3D…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Stieff, Mike; Origenes, Andrea; DeSutter, Dane; Lira, Matthew; Banevicius, Lukas; Tabang, Dylan; Cabel, Gervacio – Journal of Educational Psychology, 2018
Spatial ability predicts success in STEM (Science, Technology, Education, and Mathematics) fields, particularly chemistry. This paper reports two studies investigating the unique contribution of mental rotation ability to spatial thinking in a STEM discipline. Using authentic disciplinary tasks from chemistry, we show that the difficulty of a…
Descriptors: Cognitive Processes, STEM Education, Spatial Ability, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Lucas, Krista L. – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2021
Molecular processes are highly complex, and are frequently difficult for high school and college students to comprehend. Because of the importance of visualization in learning, along with formative assessment of student understanding, utilization of 3D modeling software aids both educators and students alike. The activity described below required…
Descriptors: Molecular Biology, Science Instruction, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Fatemah, Amal; Rasool, Shahzad; Habib, Uzma – Journal of Chemical Education, 2020
Students undertaking courses in the field of chemistry need to integrate their spatial skills and conceptual knowledge. However, model perception along with the understanding of spatial processes and spatial structures of molecules has been a cause of difficulty for students as conventional teaching methods cannot fully aid student comprehension.…
Descriptors: Chemistry, Telecommunications, Handheld Devices, Spatial Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Behmke, Derek; Kerven, David; Lutz, Robert; Paredes, Julia; Pennington, Richard; Brannock, Evelyn; Deiters, Michael; Rose, John; Stevens, Kevin – Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2018
Spatial reasoning is defined as the ability to generate, retain, and manipulate abstract visual images. In chemistry, spatial reasoning skills are typically taught using 2-D paper-based models, 3-D handheld models, and computerized models. These models are designed to aid student learning by integrating information from the macroscopic,…
Descriptors: Science Instruction, Computer Simulation, Educational Technology, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Mohamed-Salah, Boukhechem; Alain, Dumon – Chemistry Education Research and Practice, 2016
This study aims to assess whether the handling of concrete ball-and-stick molecular models promotes translation between diagrammatic representations and a concrete model (or vice versa) and the coordination of the different types of structural representations of a given molecular structure. Forty-one Algerian undergraduate students were requested…
Descriptors: Foreign Countries, Undergraduate Students, Molecular Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Carlisle, Deborah; Tyson, Julian; Nieswandt, Martina – Chemistry Education Research and Practice, 2015
The study of chemistry requires the understanding and use of spatial relationships, which can be challenging for many students. Prior research has shown that there is a need to develop students' spatial reasoning skills. To that end, this study implemented guided activities designed to strengthen students' spatial skills, with the aim of improving…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, College Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Huang, Chin-Fei; Liu, Chia-Ju – European Journal of Educational Research, 2012
The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…
Descriptors: Diagnostic Tests, College Students, Chemistry, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
McCollum, Brett M.; Regier, Lisa; Leong, Jaque; Simpson, Sarah; Sterner, Shayne – Journal of Chemical Education, 2014
The impact of touch-screen technology on spatial cognitive skills as related to molecular geometries was assessed through 102 one-on-one interviews with undergraduate students. Participants were provided with either printed 2D ball-and-stick images of molecules or manipulable projections of 3D molecular structures on an iPad. Following a brief…
Descriptors: Molecular Structure, Visualization, Competence, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Gan, Li-Hua – Journal of Chemical Education, 2008
Twelve pentagons are sufficient and necessary to form a fullerene cage. According to this structural feature of fullerenes, we propose a simple and efficient method for the construction of I[subscript h] symmetrical fullerenes from pentagons. This method does not require complicated mathematical knowledge; yet it provides an excellent paradigm for…
Descriptors: Mathematics Education, Visualization, Molecular Structure, Spatial Ability
Peer reviewed Peer reviewed
Seddon, G. M.; And Others – Research in Science and Technological Education, 1985
Determined the factor structure of tasks which require students to visualize how diagrams should be drawn to represent effects of rotating three-dimensional structures about the three Cartesian axes. Results obtained from 149 English and 231 Singapore students show that visualization about X-, Y-, and Z-axes are factorially distinct. (DH)
Descriptors: Chemistry, Diagrams, Factor Analysis, High Schools