NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Navarre, Edward C. – Journal of Chemical Education, 2020
A simple computer interface for controlling a compact spectrograph for use as a spectrophotometer in an undergraduate teaching laboratory was developed. The project was implemented on a Raspberry Pi computer which permits the integration of a light source into the software. The interface was written in Python to facilitate modification by the user…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Muelleman, Andrew W.; Glaser, Rainer E. – Journal of Chemical Education, 2018
Literacy requires reading comprehension, and fostering reading skills is an essential prerequisite to and a synergistic enabler of the development of writing skills. Reading comprehension in the chemical sciences not only consists of the understanding of text but also includes the reading and processing of data tables, schemes, and graphs. Thus,…
Descriptors: Chemistry, Science Instruction, Literacy, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sales, Eric S.; Silveira, Gustavo P. – Journal of Chemical Education, 2015
Lactone-size identification of [subscript D]-ribonolactone derivatives has been debated for four decades due to complex lactone-ring rearrangements and acetal migration. This laboratory experiment for an upper-division undergraduate organic chemistry laboratory course describes a fast and reliable assignment of lactone-size derivatives from…
Descriptors: Science Instruction, Spectroscopy, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Clark, Ted M.; Chamberlain, Julia M. – Journal of Chemical Education, 2014
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Descriptors: Simulation, Science Laboratories, Science Instruction, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Costello, Kelsey; Doan, Kevin Thinh; Organtini, Kari Lynn; Wilson, John; Boyer, Morgan; Gibbs, Greglynn; Tribe, Lorena – Journal of Chemical Education, 2014
This laboratory was developed by undergraduate students in collaboration with the course instructor as part of a peer-developed and peer-led lab curriculum in a general chemistry course. The goal was to explore the hypothesis that crystal violet lactone was responsible for the thermochromic properties of a sipping straw using a FT-IR for…
Descriptors: Science Instruction, Science Laboratories, Science Experiments, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J. – Journal of Chemical Education, 2015
An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…
Descriptors: Science Instruction, Spectroscopy, Organic Chemistry, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Euler, Manfred – Physics Education, 2013
A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…
Descriptors: Science Instruction, Physics, Hands on Science, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Gagnon, Michel – Physics Teacher, 2012
Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…
Descriptors: Simulation, Science Laboratories, Computer Software, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Soulsby, David – Journal of Chemical Education, 2012
An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…
Descriptors: Organic Chemistry, Science Instruction, Science Laboratories, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Hanley, Quentin S. – Journal of Chemical Education, 2012
Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…
Descriptors: Science Instruction, College Science, Undergraduate Study, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul – Biochemistry and Molecular Biology Education, 2012
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…
Descriptors: Biochemistry, Computer Software, Spectroscopy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter – Journal of Chemical Education, 2013
Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…
Descriptors: Science Instruction, Science Teachers, Science Laboratories, Web Based Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Mills, Nancy S.; Shanklin, Michael – Journal of Chemical Education, 2011
Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…
Descriptors: Community Colleges, Colleges, Spectroscopy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Russo, D.; Fagan, R. D.; Hesjedal, T. – IEEE Transactions on Education, 2011
The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…
Descriptors: Chemistry, Engineering, Foreign Countries, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Vitz, Ed – Journal of Chemical Education, 2010
A handheld digital microscope (HDM) interfaced to a computer with a presentation projector is used to project an out-of-focus yellow patch on the screen, then the patch is brought into focus to show that, paradoxically, there are red and green but no yellow pixels. Chromaticity diagrams are used to discuss this observation and spectroscopic…
Descriptors: Chemistry, Laboratory Equipment, Spectroscopy, Handheld Devices
Previous Page | Next Page ยป
Pages: 1  |  2