Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 3 |
Descriptor
Error of Measurement | 3 |
Monte Carlo Methods | 3 |
Statistical Analysis | 3 |
Computation | 2 |
Hierarchical Linear Modeling | 2 |
Simulation | 2 |
Statistical Bias | 2 |
Case Studies | 1 |
Correlation | 1 |
Evaluation | 1 |
Factor Structure | 1 |
More ▼ |
Author
Beretvas, S. Natasha | 3 |
Ferron, John M. | 2 |
Moeyaert, Mariola | 2 |
Ugille, Maaike | 2 |
Van den Noortgate, Wim | 2 |
Murphy, Daniel L. | 1 |
Pituch, Keenan A. | 1 |
Publication Type
Journal Articles | 3 |
Reports - Research | 2 |
Numerical/Quantitative Data | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2016
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Computation, Statistical Bias
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2014
One approach for combining single-case data involves use of multilevel modeling. In this article, the authors use a Monte Carlo simulation study to inform applied researchers under which realistic conditions the three-level model is appropriate. The authors vary the value of the immediate treatment effect and the treatment's effect on the time…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Case Studies, Research Design
Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…
Descriptors: Sample Size, Simulation, Factor Structure, Statistical Analysis