NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 56 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Anthony, James C.; Menold, Natalja – Educational and Psychological Measurement, 2023
The population relationship between coefficient alpha and scale reliability is studied in the widely used setting of unidimensional multicomponent measuring instruments. It is demonstrated that for any set of component loadings on the common factor, regardless of the extent of their inequality, the discrepancy between alpha and reliability can be…
Descriptors: Correlation, Evaluation Research, Reliability, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Calvocoressi, Lisa – Educational and Psychological Measurement, 2021
A procedure for evaluating the average R-squared index for a given set of observed variables in an exploratory factor analysis model is discussed. The method can be used as an effective aid in the process of model choice with respect to the number of factors underlying the interrelationships among studied measures. The approach is developed within…
Descriptors: Factor Analysis, Structural Equation Models, Statistical Analysis, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The present study describes an R function that implements six corrective procedures developed by Bartlett, Swain, and Yuan in the correction of 21 statistics associated with the omnibus Chi-square test, the residuals, or fit indices in confirmatory factor analysis (CFA) and structural equation modeling (SEM).
Descriptors: Statistical Analysis, Goodness of Fit, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Cui, Mengyao; Öztürk Gübes, Nese; Yang, Yanyun – Educational and Psychological Measurement, 2018
The purpose of this article is twofold. The first is to provide evaluative information on the recovery of model parameters and their standard errors for the two-parameter item response theory (IRT) model using different estimation methods by Mplus. The second is to provide easily accessible information for practitioners, instructors, and students…
Descriptors: Item Response Theory, Computation, Factor Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Andrich, David – Educational Measurement: Issues and Practice, 2016
Since Cronbach's (1951) elaboration of a from its introduction by Guttman (1945), this coefficient has become ubiquitous in characterizing assessment instruments in education, psychology, and other social sciences. Also ubiquitous are caveats on the calculation and interpretation of this coefficient. This article summarizes a recent contribution…
Descriptors: Computation, Correlation, Test Theory, Measures (Individuals)
Peer reviewed Peer reviewed
Direct linkDirect link
Davenport, Ernest C.; Davison, Mark L.; Liou, Pey-Yan; Love, Quintin U. – Educational Measurement: Issues and Practice, 2016
The main points of Sijtsma and Green and Yang in Educational Measurement: Issues and Practice (34, 4) are that reliability, internal consistency, and unidimensionality are distinct and that Cronbach's alpha may be problematic. Neither of these assertions are at odds with Davenport, Davison, Liou, and Love in the same issue. However, many authors…
Descriptors: Educational Assessment, Reliability, Validity, Test Construction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Osborne, Jason W. – Practical Assessment, Research & Evaluation, 2015
Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…
Descriptors: Factor Analysis, Social Sciences, Engineering Education, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sandusky, Peter Olaf – Journal of Chemical Education, 2017
Metabolomics applies multivariate statistical analysis to sets of high-resolution spectra taken over a population of biologically derived samples. The objective is to distinguish subpopulations within the overall sample population, and possibly also to identify biomarkers. While metabolomics has become part of the standard analytical toolbox in…
Descriptors: Undergraduate Students, Multivariate Analysis, Statistical Analysis, Chemistry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Guasch, Marc; Haro, Juan; Boada, Roger – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
With the increasing refinement of language processing models and the new discoveries about which variables can modulate these processes, stimuli selection for experiments with a factorial design is becoming a tough task. Selecting sets of words that differ in one variable, while matching these same words into dozens of other confounding variables…
Descriptors: Factor Analysis, Language Processing, Design, Cluster Grouping
Vaske, Jerry J. – Sagamore-Venture, 2019
Data collected from surveys can result in hundreds of variables and thousands of respondents. This implies that time and energy must be devoted to (a) carefully entering the data into a database, (b) running preliminary analyses to identify any problems (e.g., missing data, potential outliers), (c) checking the reliability and validity of the…
Descriptors: Surveys, Theories, Hypothesis Testing, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Ramlo, Susan – Research in the Schools, 2015
Q methodology (Q) has offered researchers a unique scientific measure of subjectivity since William Stephenson's first article in 1935. Q's focus on subjectivity includes self-referential meaning and interpretation. Q is most often identified with its technique (Q-sort) and its method (factor analysis to group people); yet, it consists of a…
Descriptors: Qualitative Research, Mixed Methods Research, Q Methodology, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A.; Tong, Bing – Educational and Psychological Measurement, 2016
A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…
Descriptors: Models, Statistical Analysis, Measurement Techniques, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Courtney, Matthew Gordon Ray – Practical Assessment, Research & Evaluation, 2013
Exploratory factor analysis (EFA) is a common technique utilized in the development of assessment instruments. The key question when performing this procedure is how to best estimate the number of factors to retain. This is especially important as under- or over-extraction may lead to erroneous conclusions. Although recent advancements have been…
Descriptors: Factor Analysis, Computer Software, Open Source Technology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E. – Educational and Psychological Measurement, 2013
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Descriptors: Testing, Statistical Analysis, Factor Analysis, Statistical Significance
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4