Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 47 |
Descriptor
Source
Author
Raykov, Tenko | 7 |
Bentler, Peter M. | 4 |
Bauer, Daniel J. | 3 |
Bollen, Kenneth A. | 2 |
Dolan, Conor V. | 2 |
Enders, Craig K. | 2 |
Hamaker, Ellen L. | 2 |
Hancock, Gregory R. | 2 |
Mair, Patrick | 2 |
Marcoulides, George A. | 2 |
Peugh, James L. | 2 |
More ▼ |
Publication Type
Reports - Descriptive | 66 |
Journal Articles | 63 |
Speeches/Meeting Papers | 2 |
Guides - General | 1 |
Information Analyses | 1 |
Education Level
Preschool Education | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 1 | 1 |
Grade 3 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Researchers | 3 |
Counselors | 1 |
Practitioners | 1 |
Students | 1 |
Teachers | 1 |
Location
Netherlands | 2 |
Sweden | 2 |
Germany | 1 |
Singapore | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Wechsler Intelligence Scale… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Raykov, Tenko; Calvocoressi, Lisa – Educational and Psychological Measurement, 2021
A procedure for evaluating the average R-squared index for a given set of observed variables in an exploratory factor analysis model is discussed. The method can be used as an effective aid in the process of model choice with respect to the number of factors underlying the interrelationships among studied measures. The approach is developed within…
Descriptors: Factor Analysis, Structural Equation Models, Statistical Analysis, Selection
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The present study describes an R function that implements six corrective procedures developed by Bartlett, Swain, and Yuan in the correction of 21 statistics associated with the omnibus Chi-square test, the residuals, or fit indices in confirmatory factor analysis (CFA) and structural equation modeling (SEM).
Descriptors: Statistical Analysis, Goodness of Fit, Factor Analysis, Structural Equation Models
Orcan, Fatih – International Journal of Assessment Tools in Education, 2021
Monte Carlo simulation is a useful tool for researchers to estimated accuracy of a statistical model. It is usually used for investigating parameter estimation procedure or violation of assumption for some given conditions. To run a simulation either the paid software or open source but free program such as R is need to be used. For that,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Accuracy, Computer Software
Peugh, James; Feldon, David F. – CBE - Life Sciences Education, 2020
Structural equation modeling is an ideal data analytical tool for testing complex relationships among many analytical variables. It can simultaneously test multiple mediating and moderating relationships, estimate latent variables on the basis of related measures, and address practical issues such as nonnormality and missing data. To test the…
Descriptors: Structural Equation Models, Goodness of Fit, Statistical Analysis, Computation
Hancock, Gregory R.; Johnson, Tessa – AERA Online Paper Repository, 2018
Longitudinal models provide researchers with a framework for investigating key aspects of change over time, but rarely is "time" itself modeled as a focal parameter of interest. Rather than treat time as purely an index of measurement occasions, the proposed Time to Criterion (T2C) growth model allows for modeling individual variability…
Descriptors: Statistical Analysis, Longitudinal Studies, Time, Structural Equation Models
Paek, Insu; Cui, Mengyao; Öztürk Gübes, Nese; Yang, Yanyun – Educational and Psychological Measurement, 2018
The purpose of this article is twofold. The first is to provide evaluative information on the recovery of model parameters and their standard errors for the two-parameter item response theory (IRT) model using different estimation methods by Mplus. The second is to provide easily accessible information for practitioners, instructors, and students…
Descriptors: Item Response Theory, Computation, Factor Analysis, Statistical Analysis
Hancock, Gregory R.; Schoonen, Rob – Language Learning, 2015
Although classical statistical techniques have been a valuable tool in second language (L2) research, L2 research questions have started to grow beyond those techniques' capabilities, and indeed are often limited by them. Questions about how complex constructs relate to each other or to constituent subskills, about longitudinal development in…
Descriptors: Structural Equation Models, Language Research, Second Language Learning, Statistical Analysis
Yuan, Ke-Hai; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…
Descriptors: Structural Equation Models, Statistical Analysis, Robustness (Statistics), Computer Software
Li, Libo; Bentler, Peter M. – Psychological Methods, 2011
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…
Descriptors: Structural Equation Models, Statistical Analysis, Comparative Analysis
Bollen, Kenneth A.; Bauldry, Shawn – Psychological Methods, 2011
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…
Descriptors: Statistical Analysis, Computation, Structural Equation Models, Expertise
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…
Descriptors: Predictive Validity, Reliability, Structural Equation Models, Measures (Individuals)
Treiblmaier, Horst; Bentler, Peter M.; Mair, Patrick – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Recently there has been a renewed interest in formative measurement and its role in properly specified models. Formative measurement models are difficult to identify, and hence to estimate and test. Existing solutions to the identification problem are shown to not adequately represent the formative constructs of interest. We propose a new two-step…
Descriptors: Structural Equation Models, Measurement, Predictor Variables, Identification
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics