NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…9
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Karumbaiah, Shamya – International Educational Data Mining Society, 2021
Research studies in Educational Data Mining (EDM) often involve several variables related to student learning activities. As such, it may be necessary to run multiple statistical tests simultaneously, thereby leading to the problem of multiple comparisons. The Benjamini-Hochberg (BH) procedure is commonly used in EDM research to address this…
Descriptors: Statistical Analysis, Validity, Classification, Hypothesis Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zehner, Fabian; Harrison, Scott; Eichmann, Beate; Deribo, Tobias; Bengs, Daniel; Andersen, Nico; Hahnel, Carolin – International Educational Data Mining Society, 2020
The "2nd Annual WPI-UMASS-UPENN EDM Data Mining Challenge" required contestants to predict efficient testtaking based on log data. In this paper, we describe our theory-driven and psychometric modeling approach. For feature engineering, we employed the Log-Normal Response Time Model for estimating latent person speed, and the Generalized…
Descriptors: Data Analysis, Competition, Classification, Prediction
Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui – International Educational Data Mining Society, 2015
Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…
Descriptors: Comparative Analysis, Classification, Regression (Statistics), Mathematics
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter – International Educational Data Mining Society, 2015
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Descriptors: Guidelines, Models, Prediction, Evaluation Methods
Géryk, Jan – International Educational Data Mining Society, 2015
The efficacy of animated data visualizations in comparison with static data visualizations is still inconclusive. Some researches resulted that the failure to find out the benefits of animations may relate to the way how they are constructed and perceived. In this paper, we present visual analytics (VA) tool which makes use of enhanced animated…
Descriptors: Animation, Visualization, Visual Stimuli, Program Effectiveness
Nye, Benjamin D.; Morrison, Donald M.; Samei, Borhan – International Educational Data Mining Society, 2015
Archived transcripts from tens of millions of online human tutoring sessions potentially contain important knowledge about how online tutors help, or fail to help, students learn. However, without ways of automatically analyzing these large corpora, any knowledge in this data will remain buried. One way to approach this issue is to train an…
Descriptors: Tutoring, Instructional Effectiveness, Tutors, Models
Crossley, Scott; McNamara, Danielle S.; Baker, Ryan; Wang, Yuan; Paquette, Luc; Barnes, Tiffany; Bergner, Yoav – International Educational Data Mining Society, 2015
Completion rates for massive open online classes (MOOCs) are notoriously low, but learner intent is an important factor. By studying students who drop out despite their intent to complete the MOOC, it may be possible to develop interventions to improve retention and learning outcomes. Previous research into predicting MOOC completion has focused…
Descriptors: Online Courses, Large Group Instruction, Information Retrieval, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection