Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
Journal of Educational and… | 13 |
Author
Grund, Simon | 2 |
Lüdtke, Oliver | 2 |
Robitzsch, Alexander | 2 |
Algina, James | 1 |
Ariet, Mario | 1 |
Browne, William | 1 |
Carter, Randy L. | 1 |
Fisher, Thomas | 1 |
Goldstein, Harvey | 1 |
Graham, James M. | 1 |
Huang, Francis L. | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 8 |
Reports - Descriptive | 4 |
Reports - Evaluative | 1 |
Education Level
Secondary Education | 2 |
Elementary Secondary Education | 1 |
Audience
Location
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Huang, Francis L. – Journal of Educational and Behavioral Statistics, 2022
The presence of clustered data is common in the sociobehavioral sciences. One approach that specifically deals with clustered data but has seen little use in education is the generalized estimating equations (GEEs) approach. We provide a background on GEEs, discuss why it is appropriate for the analysis of clustered data, and provide worked…
Descriptors: Multivariate Analysis, Computation, Correlation, Error of Measurement
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Nestler, Steffen – Journal of Educational and Behavioral Statistics, 2018
The social relations model (SRM) is a mathematical model that can be used to analyze interpersonal judgment and behavior data. Typically, the SRM is applied to one (i.e., univariate SRM) or two variables (i.e., bivariate SRM), and parameter estimates are obtained by employing an analysis of variance method. Here, we present an extension of the SRM…
Descriptors: Mathematical Models, Interpersonal Relationship, Maximum Likelihood Statistics, Computation
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2018
Multiple imputation (MI) can be used to address missing data at Level 2 in multilevel research. In this article, we compare joint modeling (JM) and the fully conditional specification (FCS) of MI as well as different strategies for including auxiliary variables at Level 1 using either their manifest or their latent cluster means. We show with…
Descriptors: Statistical Analysis, Data, Comparative Analysis, Hierarchical Linear Modeling
Rhoads, Christopher – Journal of Educational and Behavioral Statistics, 2017
Researchers designing multisite and cluster randomized trials of educational interventions will usually conduct a power analysis in the planning stage of the study. To conduct the power analysis, researchers often use estimates of intracluster correlation coefficients and effect sizes derived from an analysis of survey data. When there is…
Descriptors: Statistical Analysis, Hierarchical Linear Modeling, Surveys, Effect Size
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
Raykov, Tenko; Marcoulides, George A. – Journal of Educational and Behavioral Statistics, 2010
A latent variable modeling method is outlined for constructing a confidence interval (CI) of a popular multivariate effect size measure. The procedure uses the conventional multivariate analysis of variance (MANOVA) setup and is applicable with large samples. The approach provides a population range of plausible values for the proportion of…
Descriptors: Multivariate Analysis, Effect Size, Computation, Statistical Analysis
Longford, Nicholas T. – Journal of Educational and Behavioral Statistics, 2012
Statistical modeling of school effectiveness data was originally motivated by the dissatisfaction with the analysis of (school-leaving) examination results that took no account of the background of the students or regarded each school as an isolated unit of analysis. The application of multilevel analysis was generally regarded as a breakthrough,…
Descriptors: School Effectiveness, Data Analysis, Statistical Analysis, Statistical Studies
Browne, William; Goldstein, Harvey – Journal of Educational and Behavioral Statistics, 2010
In this article, we discuss the effect of removing the independence assumptions between the residuals in two-level random effect models. We first consider removing the independence between the Level 2 residuals and instead assume that the vector of all residuals at the cluster level follows a general multivariate normal distribution. We…
Descriptors: Computation, Sampling, Markov Processes, Monte Carlo Methods
Graham, James M. – Journal of Educational and Behavioral Statistics, 2008
Statistical procedures based on the general linear model (GLM) share much in common with one another, both conceptually and practically. The use of structural equation modeling path diagrams as tools for teaching the GLM as a body of connected statistical procedures is presented. A heuristic data set is used to demonstrate a variety of univariate…
Descriptors: Causal Models, Structural Equation Models, Multivariate Analysis, Multiple Regression Analysis
Miyazaki, Yasuo; Maier, Kimberly S. – Journal of Educational and Behavioral Statistics, 2005
In hierarchical linear models we often find that group indicator variables at the cluster level are significant predictors for the regression slopes. When this is the case, the average relationship between the outcome and a key independent variable are different from group to group. In these settings, a question such as "what range of the…
Descriptors: Statistical Analysis, Predictor Variables, Multivariate Analysis, Regression (Statistics)
Tekwe, Carmen D.; Carter, Randy L.; Ma, Chang-Xing; Algina, James; Lucas, Maurice E.; Roth, Jeffrey; Ariet, Mario; Fisher, Thomas; Resnick, Michael B. – Journal of Educational and Behavioral Statistics, 2004
Hierarchical Linear Models (HLM) have been used extensively for value-added analysis, adjusting for important student and school-level covariates such as socioeconomic status. A recently proposed alternative, the Layered Mixed Effects Model (LMEM) also analyzes learning gains, but ignores sociodemographic factors. Other features of LMEM, such as…
Descriptors: Accountability, Academic Achievement, Mathematical Models, Statistical Analysis
Wainer, Howard; Robinson, Dan – Journal of Educational and Behavioral Statistics, 2006
This article presents an interview with R. Darrell Bock. He served as president of the Psychometric Society from 1972-1973. He has received the National Council on Measurement in Education award for "Contributions to the Design and Analysis of Educational Assessment" in 1990, the Educational Testing Service award for "Distinguished Contributions…
Descriptors: Interviews, Biographical Inventories, Personal Narratives, Awards