NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael – Journal of Educational and Behavioral Statistics, 2015
The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Factor Analysis, Multitrait Multimethod Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning – Journal of Educational and Behavioral Statistics, 2012
The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…
Descriptors: Structural Equation Models, Goodness of Fit, Geometric Concepts, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, James M. – Journal of Educational and Behavioral Statistics, 2008
Statistical procedures based on the general linear model (GLM) share much in common with one another, both conceptually and practically. The use of structural equation modeling path diagrams as tools for teaching the GLM as a body of connected statistical procedures is presented. A heuristic data set is used to demonstrate a variety of univariate…
Descriptors: Causal Models, Structural Equation Models, Multivariate Analysis, Multiple Regression Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ferron, John M.; Hess, Melinda R. – Journal of Educational and Behavioral Statistics, 2007
A concrete example is used to illustrate maximum likelihood estimation of a structural equation model with two unknown parameters. The fitting function is found for the example, as are the vector of first-order partial derivatives, the matrix of second-order partial derivatives, and the estimates obtained from each iteration of the Newton-Raphson…
Descriptors: Structural Equation Models, Computation, Statistics, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry – Journal of Educational and Behavioral Statistics, 2007
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Descriptors: Foreign Countries, Structural Equation Models, Markov Processes, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Klein, Andreas G.; Muthen, Bengt O. – Journal of Educational and Behavioral Statistics, 2006
In this article, a heterogeneous latent growth curve model for modeling heterogeneity of growth rates is proposed. The suggested model is an extension of a conventional growth curve model and a complementary tool to mixed growth modeling. It allows the modeling of heterogeneity of growth rates as a continuous function of latent initial status and…
Descriptors: Intervals, Computation, Structural Equation Models, Mathematics Achievement