NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Borenstein – Research Synthesis Methods, 2024
In any meta-analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact "on average" we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the…
Descriptors: Meta Analysis, Error Patterns, Statistical Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Cairns, Maxwell; Prendergast, Luke A. – Research Synthesis Methods, 2022
As a measure of heterogeneity in meta-analysis, the coefficient of variation (CV) has been recently considered, providing researchers with a complement to the very popular I[superscript 2] measure. While I[superscript 2] measures the proportion of total variance that is due to variance of the random effects, the CV is the ratio of the standard…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Wenhao; Siegel, Lianne; Zhou, Jincheng; Zhu, Motao; Tong, Tiejun; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
A reference interval provides a basis for physicians to determine whether a measurement is typical of a healthy individual. It can be interpreted as a prediction interval for a new individual from the overall population. However, a reference interval based on a single study may not be representative of the broader population. Meta-analysis can…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kulinskaya, Elena; Hoaglin, David C. – Research Synthesis Methods, 2023
For estimation of heterogeneity variance T[superscript 2] in meta-analysis of log-odds-ratio, we derive new mean- and median-unbiased point estimators and new interval estimators based on a generalized Q statistic, Q[subscript F], in which the weights depend on only the studies' effective sample sizes. We compare them with familiar estimators…
Descriptors: Q Methodology, Statistical Analysis, Meta Analysis, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mawdsley, David; Higgins, Julian P. T.; Sutton, Alex J.; Abrams, Keith R. – Research Synthesis Methods, 2017
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In…
Descriptors: Databases, Meta Analysis, Goodness of Fit, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Schild, Anne H. E.; Voracek, Martin – Research Synthesis Methods, 2015
Research has shown that forest plots are a gold standard in the visualization of meta-analytic results. However, research on the general interpretation of forest plots and the role of researchers' meta-analysis experience and field of study is still unavailable. Additionally, the traditional display of effect sizes, confidence intervals, and…
Descriptors: Graphs, Visualization, Meta Analysis, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Clare; Ramsay, Craig; Gurung, Tara; Mowatt, Graham; Pickard, Robert; Sharma, Pawana – Research Synthesis Methods, 2014
We describe our experience of using a modified version of the Cochrane risk of bias (RoB) tool for randomised and non-randomised comparative studies. Objectives: (1) To assess time to complete RoB assessment; (2) To assess inter-rater agreement; and (3) To explore the association between RoB and treatment effect size. Methods: Cochrane risk of…
Descriptors: Risk, Randomized Controlled Trials, Research Design, Comparative Analysis