NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Enders, Craig K.; Gottschall, Amanda C. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated…
Descriptors: Structural Equation Models, Statistical Analysis, Data, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Jiun-Yu; Kwok, Oi-man – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…
Descriptors: Structural Equation Models, Surveys, Data Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…
Descriptors: Data, Structural Equation Models, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jackman, M. Grace-Anne; Leite, Walter L.; Cochrane, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This Monte Carlo simulation study investigated methods of forming product indicators for the unconstrained approach for latent variable interaction estimation when the exogenous factors are measured by large and unequal numbers of indicators. Product indicators were created based on multiplying parcels of the larger scale by indicators of the…
Descriptors: Computation, Statistical Data, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes; French, Brian F. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The purpose of this simulation study was to assess the performance of latent variable models that take into account the complex sampling mechanism that often underlies data used in educational, psychological, and other social science research. Analyses were conducted using the multiple indicator multiple cause (MIMIC) model, which is a flexible…
Descriptors: Causal Models, Computation, Data, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Kim, Jee-Seon – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand…
Descriptors: Structural Equation Models, Data Analysis, Research Methodology, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Incomplete nonnormal data are common occurrences in applied research. Although these 2 problems are often dealt with separately by methodologists, they often cooccur. Very little has been written about statistics appropriate for evaluating models with such data. This article extends several existing statistics for complete nonnormal data to…
Descriptors: Sample Size, Statistics, Data, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Nylund, Karen L.; Asparouhov, Tihomir; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study…
Descriptors: Test Items, Monte Carlo Methods, Program Effectiveness, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Dolan, Conor; van der Sluis, Sophie; Grasman, Raoul – Structural Equation Modeling: A Multidisciplinary Journal, 2005
We consider power calculation in structural equation modeling with data missing completely at random (MCAR). Muth?n and Muth?n (2002) recently demonstrated how power calculations with data MCAR can be carried out by means of a Monte Carlo study. Here we show that the method of Satorra and Saris (1985), which is based on the nonnull distribution of…
Descriptors: Computation, Monte Carlo Methods, Structural Equation Models, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1  |  2