Publication Date
In 2025 | 3 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 20 |
Descriptor
Factor Analysis | 20 |
Statistical Analysis | 20 |
Structural Equation Models | 14 |
Goodness of Fit | 8 |
Models | 5 |
Simulation | 5 |
Comparative Analysis | 4 |
Data | 4 |
Monte Carlo Methods | 4 |
Equations (Mathematics) | 3 |
Evaluation Methods | 3 |
More ▼ |
Source
Structural Equation Modeling:… | 20 |
Author
Bauer, Daniel J. | 2 |
Bentler, Peter M. | 2 |
A. R. Georgeson | 1 |
Baldasaro, Ruth E. | 1 |
Benjamin Nagengast | 1 |
Cai, Li | 1 |
Carl F. Falk | 1 |
Chow, Sy-Miin | 1 |
Chunhua Cao | 1 |
Dolan, Conor V. | 1 |
Enders, Craig K. | 1 |
More ▼ |
Publication Type
Journal Articles | 20 |
Reports - Research | 10 |
Reports - Descriptive | 5 |
Reports - Evaluative | 5 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Enders, Craig K.; Gottschall, Amanda C. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated…
Descriptors: Structural Equation Models, Statistical Analysis, Data, Factor Analysis
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Moshagen, Morten – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The size of a model has been shown to critically affect the goodness of approximation of the model fit statistic "T" to the asymptotic chi-square distribution in finite samples. It is not clear, however, whether this "model size effect" is a function of the number of manifest variables, the number of free parameters, or both. It is demonstrated by…
Descriptors: Goodness of Fit, Structural Equation Models, Statistical Analysis, Monte Carlo Methods
Sterba, Sonya K. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article relates a still-popular motivation for using parceling to an unrecognized cost. The still-popular motivation is improvement in fit with respect to the item-solution. The cost is uncertainty in fit due to the selection of one out of many possible item-to-parcel allocations. A theoretical framework establishes the reason for this…
Descriptors: Goodness of Fit, Factor Analysis, Structural Equation Models, Statistical Analysis
Wang, Lijuan; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This study investigated influences of censored data on mediation analysis. Mediation effect estimates can be biased and inefficient with censoring on any one of the input, mediation, and output variables. A Bayesian Tobit approach was introduced to estimate and test mediation effects with censored data. Simulation results showed that the Bayesian…
Descriptors: Statistical Analysis, Mediation Theory, Censorship, Bayesian Statistics
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Descriptors: Models, Statistical Analysis, Structural Equation Models, Factor Analysis
Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…
Descriptors: Structural Equation Models, Mixed Methods Research, Statistical Analysis, Sampling
Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Maydeu-Olivares, Alberto; Cai, Li; Hernandez, Adolfo – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Linear factor analysis (FA) models can be reliably tested using test statistics based on residual covariances. We show that the same statistics can be used to reliably test the fit of item response theory (IRT) models for ordinal data (under some conditions). Hence, the fit of an FA model and of an IRT model to the same data set can now be…
Descriptors: Factor Analysis, Research Methodology, Statistics, Item Response Theory
Jones-Farmer, L. Allison – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When comparing latent variables among groups, it is important to first establish the equivalence or invariance of the measurement model across groups. Confirmatory factor analysis (CFA) is a commonly used methodological approach to examine measurement equivalence/invariance (ME/I). Within the CFA framework, the chi-square goodness-of-fit test and…
Descriptors: Factor Structure, Factor Analysis, Evaluation Research, Goodness of Fit
Previous Page | Next Page »
Pages: 1 | 2