NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…
Descriptors: Sample Size, Simulation, Factor Structure, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jones-Farmer, L. Allison – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When comparing latent variables among groups, it is important to first establish the equivalence or invariance of the measurement model across groups. Confirmatory factor analysis (CFA) is a commonly used methodological approach to examine measurement equivalence/invariance (ME/I). Within the CFA framework, the chi-square goodness-of-fit test and…
Descriptors: Factor Structure, Factor Analysis, Evaluation Research, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Meade, Adam W.; Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
This study investigates the effects of sample size, factor overdetermination, and communality on the precision of factor loading estimates and the power of the likelihood ratio test of factorial invariance in multigroup confirmatory factor analysis. Although sample sizes are typically thought to be the primary determinant of precision and power,…
Descriptors: Sample Size, Factor Structure, Factor Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hayashi, Kentaro; Bentler, Peter M.; Yuan, Ke-Hai – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In the exploratory factor analysis, when the number of factors exceeds the true number of factors, the likelihood ratio test statistic no longer follows the chi-square distribution due to a problem of rank deficiency and nonidentifiability of model parameters. As a result, decisions regarding the number of factors may be incorrect. Several…
Descriptors: Researchers, Factor Analysis, Factor Structure, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Byrne, Barbara M.; Stewart, Sunita M. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The overarching intent of this article is to exemplify strategies associated with tests for measurement invariance that are uncommonly applied and reported in the extant literature. Designed within a pedagogical framework, the primary purposes are 3-fold and illustrate (a) tests for measurement invariance based on the analysis of means and…
Descriptors: Factor Structure, Item Response Theory, Testing, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
van der Sluis, Sophie; Dolan, Conor V.; Stoel, Reinoud D. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article is concerned with the seemingly simple problem of testing whether latent factors are perfectly correlated (i.e., statistically indistinct). In recent literature, researchers have used different approaches, which are not always correct or complete. We discuss the parameter constraints required to obtain such perfectly correlated latent…
Descriptors: Testing, Factor Structure, Structural Equation Models, Correlation