Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Bayesian Statistics | 6 |
Randomized Controlled Trials | 6 |
Statistical Analysis | 6 |
Statistical Inference | 4 |
Comparative Analysis | 3 |
Causal Models | 2 |
Medical Research | 2 |
Meta Analysis | 2 |
Research Problems | 2 |
Attribution Theory | 1 |
Control Groups | 1 |
More ▼ |
Author
Peng Ding | 2 |
Fan Li | 1 |
Feller, Avi | 1 |
Luke W. Miratrix | 1 |
Madden, Laurence V. | 1 |
Miratrix, Luke | 1 |
Ohmann, Christian | 1 |
Pati, Debdeep | 1 |
Piepho, Hans-Peter | 1 |
Pillai, Natesh | 1 |
Verde, Pablo E. | 1 |
More ▼ |
Publication Type
Reports - Research | 4 |
Information Analyses | 2 |
Journal Articles | 2 |
Collected Works - General | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Society for Research on Educational Effectiveness, 2017
Bayesian statistical methods have become more feasible to implement with advances in computing but are not commonly used in educational research. In contrast to frequentist approaches that take hypotheses (and the associated parameters) as fixed, Bayesian methods take data as fixed and hypotheses as random. This difference means that Bayesian…
Descriptors: Bayesian Statistics, Educational Research, Statistical Analysis, Decision Making
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Verde, Pablo E.; Ohmann, Christian – Research Synthesis Methods, 2015
Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis, such as generalizing experimental results or increasing the power to detect an effect that a single study is not able to detect. However, while in meta-analysis, the main question may be simple, the structure of evidence available to answer it…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Comparative Analysis, Evidence