Publication Date
In 2025 | 2 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 10 |
Descriptor
Causal Models | 10 |
Randomized Controlled Trials | 10 |
Statistical Analysis | 10 |
Comparative Analysis | 3 |
Educational Research | 3 |
Generalization | 3 |
Research Design | 3 |
Research Problems | 3 |
Sample Size | 3 |
Statistical Inference | 3 |
Algebra | 2 |
More ▼ |
Source
Grantee Submission | 4 |
Journal of Research on… | 2 |
Society for Research on… | 2 |
Journal of Educational and… | 1 |
Journal of Policy Analysis… | 1 |
Author
Charlotte Z. Mann | 2 |
Johann A. Gagnon-Bartsch | 2 |
Peng Ding | 2 |
Adam C. Sales | 1 |
Adam Sales | 1 |
Chan, Wendy | 1 |
Cook, Thomas D. | 1 |
Ding, Peng | 1 |
Fan Li | 1 |
Feller, Avi | 1 |
Jaylin Lowe | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 5 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Elementary Education | 1 |
High Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Sales, Adam C.; Pane, John F. – Journal of Research on Educational Effectiveness, 2021
Randomized evaluations of educational technology produce log data as a bi-product: highly granular data on student and teacher usage. These datasets could shed light on causal mechanisms, effect heterogeneity, or optimal use. However, there are methodological challenges: implementation is not randomized and is only defined for the treatment group,…
Descriptors: Educational Technology, Use Studies, Randomized Controlled Trials, Mathematics Curriculum
Jaylin Lowe; Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
Recent methods have sought to improve precision in randomized controlled trials (RCTs) by utilizing data from large observational datasets for covariate adjustment. For example, consider an RCT aimed at evaluating a new algebra curriculum, in which a few dozen schools are randomly assigned to treatment (new curriculum) or control (standard…
Descriptors: Randomized Controlled Trials, Middle School Mathematics, Middle School Students, Middle Schools
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Ding, Peng; Feller, Avi; Miratrix, Luke – Society for Research on Educational Effectiveness, 2015
Recent literature has underscored the critical role of treatment effect variation in estimating and understanding causal effects. This approach, however, is in contrast to much of the foundational research on causal inference. Linear models, for example, classically rely on constant treatment effect assumptions, or treatment effects defined by…
Descriptors: Causal Models, Randomized Controlled Trials, Statistical Analysis, Evaluation Methods
Chan, Wendy – Journal of Research on Educational Effectiveness, 2017
Recent methods to improve generalizations from nonrandom samples typically invoke assumptions such as the strong ignorability of sample selection, which is challenging to meet in practice. Although researchers acknowledge the difficulty in meeting this assumption, point estimates are still provided and used without considering alternative…
Descriptors: Generalization, Inferences, Probability, Educational Research
Wing, Coady; Cook, Thomas D. – Journal of Policy Analysis and Management, 2013
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
Descriptors: Regression (Statistics), Research Design, Statistical Analysis, Research Problems