NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bonifay, Wes; Depaoli, Sarah – Prevention Science, 2023
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard goodness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Programming Languages, Psychopathology, Classification
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Guerra-Peña, Kiero; Steinley, Douglas – Educational and Psychological Measurement, 2016
Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…
Descriptors: Growth Models, Bayesian Statistics, Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Ashby, F. Gregory; Vucovich, Lauren E. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how…
Descriptors: Feedback (Response), Classification, Learning Processes, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, In-Hee; Wilson, Mark – Educational and Psychological Measurement, 2015
An essential feature of the linear logistic test model (LLTM) is that item difficulties are explained using item design properties. By taking advantage of this explanatory aspect of the LLTM, in a mixture extension of the LLTM, the meaning of latent classes is specified by how item properties affect item difficulties within each class. To improve…
Descriptors: Classification, Test Items, Difficulty Level, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
A growing body of research suggests that accounting for student specific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a…
Descriptors: Models, Regression (Statistics), Learning, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, W. Paul – Educational and Psychological Measurement, 2014
A study in a university clinic/laboratory investigated adaptive Bayesian scaling as a supplement to interpretation of scores on the Mini-IPIP. A "probability of belonging" in categories of low, medium, or high on each of the Big Five traits was calculated after each item response and continued until all items had been used or until a…
Descriptors: Personality Traits, Personality Measures, Bayesian Statistics, Clinics
Liu, Junhui – ProQuest LLC, 2012
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
Descriptors: Statistical Analysis, Models, Sample Size, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta – Measurement: Interdisciplinary Research and Perspectives, 2012
Von Davier et al. (this issue) describe two analyses that aim at determining whether the constructs measured with a number of observed items are categorical or continuous in nature. The issue of types versus traits has a long history and is relevant in many areas of behavioral research, including personality research, as emphasized by von Davier…
Descriptors: Models, Classification, Multivariate Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
de la Torre, Jimmy; Hong, Yuan; Deng, Weiling – Journal of Educational Measurement, 2010
To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…
Descriptors: Classification, Computation, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
DeCarlo, Lawrence T. – Applied Psychological Measurement, 2011
Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…
Descriptors: Bayesian Statistics, Computation, Cognitive Tests, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Finkelman, Matthew David – Applied Psychological Measurement, 2010
In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…
Descriptors: Mastery Tests, Computer Assisted Testing, Adaptive Testing, Test Length
Previous Page | Next Page »
Pages: 1  |  2