Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 252 |
Since 2006 (last 20 years) | 570 |
Descriptor
Comparative Analysis | 766 |
Statistical Analysis | 766 |
Models | 492 |
Foreign Countries | 195 |
Correlation | 146 |
Mathematical Models | 122 |
Structural Equation Models | 111 |
Academic Achievement | 96 |
Scores | 95 |
Pretests Posttests | 85 |
Questionnaires | 85 |
More ▼ |
Source
Author
Balu, Rekha | 4 |
Convey, John J. | 4 |
DeLaurentis, Micah | 4 |
Rappaport, Shelley | 4 |
Zhang, Zhiyong | 4 |
Zhu, Pei | 4 |
Cho, Sun-Joo | 3 |
Katsioloudis, Petros J. | 3 |
Marascuilo, Leonard A. | 3 |
Allensworth, Elaine | 2 |
Angoff, William H. | 2 |
More ▼ |
Publication Type
Education Level
Location
Germany | 21 |
Australia | 18 |
Netherlands | 18 |
Turkey | 15 |
California | 13 |
Florida | 13 |
United States | 13 |
China | 12 |
Canada | 11 |
Italy | 10 |
United Kingdom | 10 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Elementary and Secondary… | 2 |
Individuals with Disabilities… | 2 |
Pell Grant Program | 2 |
Manpower Development and… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 2 |
Meets WWC Standards with or without Reservations | 3 |
Does not meet standards | 2 |
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Judith Glaesser – International Journal of Social Research Methodology, 2024
Causal asymmetry is a situation where the causal factors under study are more suitable for explaining the outcome than its absence (or vice versa); they do not explain both equally well. In such a situation, presence of a cause leads to presence of the effect, but absence of the cause may not lead to absence of the effect. A conceptual discussion…
Descriptors: Comparative Analysis, Causal Models, Correlation, Foreign Countries
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Hertog, Steffen – Sociological Methods & Research, 2023
In mixed methods approaches, statistical models are used to identify "nested" cases for intensive, small-n investigation for a range of purposes, including notably the examination of causal mechanisms. This article shows that under a commonsense interpretation of causal effects, large-n models allow no reliable conclusions about effect…
Descriptors: Case Studies, Generalization, Prediction, Mixed Methods Research
Olanipekun, Oluwaseun L.; Zhao, JuLong; Wang, Rongdong; A. Sedory, Stephen; Singh, Sarjinder – Sociological Methods & Research, 2023
In carrying out surveys involving sensitive characteristics, randomized response models have been considered among the best techniques since they provide the maximum privacy protection to the respondents and procure honest responses. Over the years, researchers have carried out studies on the estimation of proportions of the population possessing…
Descriptors: Correlation, Smoking, Thinking Skills, Health Behavior
Chattoe-Brown, Edmund – International Journal of Social Research Methodology, 2021
This article demonstrates how a technique called Agent-Based Modelling can address a significant challenge for effective interdisciplinarity. Different disciplines and research methods make divergent assertions about what a satisfactory explanation requires. However, without a unified framework analysing the implications of these differences…
Descriptors: Interdisciplinary Approach, Models, Research Methodology, Statistical Analysis
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Thompson, Yutian T.; Song, Hairong; Shi, Dexin; Liu, Zhengkui – Educational and Psychological Measurement, 2021
Conventional approaches for selecting a reference indicator (RI) could lead to misleading results in testing for measurement invariance (MI). Several newer quantitative methods have been available for more rigorous RI selection. However, it is still unknown how well these methods perform in terms of correctly identifying a truly invariant item to…
Descriptors: Measurement, Statistical Analysis, Selection, Comparative Analysis
Gruver, Nate; Malik, Ali; Capoor, Brahm; Piech, Chris; Stevens, Mitchell L.; Paepcke, Andreas – International Educational Data Mining Society, 2019
Understanding large-scale patterns in student course enrollment is a problem of great interest to university administrators and educational researchers. Yet important decisions are often made without a good quantitative framework of the process underlying student choices. We propose a probabilistic approach to modelling course enrollment…
Descriptors: Models, Course Selection (Students), Enrollment, Decision Making
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Block, Per; Stadtfeld, Christoph; Snijders, Tom A. B. – Sociological Methods & Research, 2019
Two approaches for the statistical analysis of social network generation are widely used; the tie-oriented exponential random graph model (ERGM) and the stochastic actor-oriented model (SAOM) or Siena model. While the choice for either model by empirical researchers often seems arbitrary, there are important differences between these models that…
Descriptors: Statistical Analysis, Social Networks, Models, Network Analysis
Fullerton, Andrew S.; Xu, Jun – Sociological Methods & Research, 2018
Adjacent category logit models are ordered regression models that focus on comparisons of adjacent categories. These models are particularly useful for ordinal response variables with categories that are of substantive interest. In this article, we consider unconstrained and constrained versions of the partial adjacent category logit model, which…
Descriptors: Regression (Statistics), Models, Classification, Comparative Analysis
Cheung, Mike W.-L.; Cheung, Shu Fai – Research Synthesis Methods, 2016
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Descriptors: Statistical Analysis, Models, Meta Analysis, Structural Equation Models
Nazari, Sanaz; Leite, Walter L.; Huggins-Manley, A. Corinne – Journal of Experimental Education, 2023
The piecewise latent growth models (PWLGMs) can be used to study changes in the growth trajectory of an outcome due to an event or condition, such as exposure to an intervention. When there are multiple outcomes of interest, a researcher may choose to fit a series of PWLGMs or a single parallel-process PWLGM. A comparison of these models is…
Descriptors: Growth Models, Statistical Analysis, Intervention, Comparative Analysis