Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 44 |
Since 2006 (last 20 years) | 125 |
Descriptor
Error of Measurement | 183 |
Statistical Analysis | 183 |
Models | 70 |
Structural Equation Models | 58 |
Mathematical Models | 48 |
Computation | 44 |
Comparative Analysis | 39 |
Monte Carlo Methods | 35 |
Correlation | 31 |
Statistical Bias | 30 |
Goodness of Fit | 28 |
More ▼ |
Source
Author
Leite, Walter L. | 5 |
Finch, W. Holmes | 4 |
Yuan, Ke-Hai | 4 |
Bashaw, W. L. | 3 |
Bentler, Peter M. | 3 |
Kristof, Walter | 3 |
Linn, Robert L. | 3 |
Raykov, Tenko | 3 |
Werts, Charles E. | 3 |
Zhang, Zhiyong | 3 |
Brennan, Robert L. | 2 |
More ▼ |
Publication Type
Education Level
Elementary Education | 10 |
Secondary Education | 8 |
Higher Education | 7 |
Elementary Secondary Education | 4 |
Middle Schools | 4 |
Postsecondary Education | 4 |
Grade 9 | 3 |
High Schools | 3 |
Junior High Schools | 3 |
Grade 10 | 2 |
Grade 4 | 2 |
More ▼ |
Audience
Researchers | 6 |
Teachers | 2 |
Policymakers | 1 |
Location
Germany | 2 |
Turkey | 2 |
Australia | 1 |
Bahrain | 1 |
Belgium | 1 |
Brazil | 1 |
District of Columbia | 1 |
Illinois | 1 |
Indonesia | 1 |
Ireland | 1 |
Japan | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
Race to the Top | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Qian Zhang; Qi Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In the article, we focused on the issues of measurement error and omitted confounders while conducting mediation analysis under experimental studies. Depending on informativeness of the confounders between the mediator (M) and outcome (Y), we described two approaches. When researchers are confident that primary confounders are included (e.g.,…
Descriptors: Error of Measurement, Research and Development, Mediation Theory, Causal Models
Penaloza, Roberto V.; Berends, Mark – Sociological Methods & Research, 2022
To measure "treatment" effects, social science researchers typically rely on nonexperimental data. In education, school and teacher effects on students are often measured through value-added models (VAMs) that are not fully understood. We propose a framework that relates to the education production function in its most flexible form and…
Descriptors: Data, Value Added Models, Error of Measurement, Correlation
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Qinyun Lin; Amy K. Nuttall; Qian Zhang; Kenneth A. Frank – Grantee Submission, 2023
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved…
Descriptors: Causal Models, Mediation Theory, Error of Measurement, Statistical Inference
Ke-Hai Yuan; Yong Wen; Jiashan Tang – Grantee Submission, 2022
Structural equation modeling (SEM) and path analysis using composite-scores are distinct classes of methods for modeling the relationship of theoretical constructs. The two classes of methods are integrated in the partial-least-squares approach to structural equation modeling (PLS-SEM), which systematically generates weighted composites and uses…
Descriptors: Statistical Analysis, Weighted Scores, Least Squares Statistics, Structural Equation Models
Haimiao Yuan – ProQuest LLC, 2022
The application of diagnostic classification models (DCMs) in the field of educational measurement is getting more attention in recent years. To make a valid inference from the model, it is important to ensure that the model fits the data. The purpose of the present study was to investigate the performance of the limited information…
Descriptors: Goodness of Fit, Educational Assessment, Educational Diagnosis, Models
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Kane, Michael T.; Mroch, Andrew A. – ETS Research Report Series, 2020
Ordinary least squares (OLS) regression and orthogonal regression (OR) address different questions and make different assumptions about errors. The OLS regression of Y on X yields predictions of a dependent variable (Y) contingent on an independent variable (X) and minimizes the sum of squared errors of prediction. It assumes that the independent…
Descriptors: Regression (Statistics), Least Squares Statistics, Test Bias, Error of Measurement
Nazari, Sanaz; Leite, Walter L.; Huggins-Manley, A. Corinne – Journal of Experimental Education, 2023
The piecewise latent growth models (PWLGMs) can be used to study changes in the growth trajectory of an outcome due to an event or condition, such as exposure to an intervention. When there are multiple outcomes of interest, a researcher may choose to fit a series of PWLGMs or a single parallel-process PWLGM. A comparison of these models is…
Descriptors: Growth Models, Statistical Analysis, Intervention, Comparative Analysis
Raykov, Tenko; Dimitrov, Dimiter M.; Marcoulides, George A.; Li, Tatyana; Menold, Natalja – Educational and Psychological Measurement, 2018
A latent variable modeling method for studying measurement invariance when evaluating latent constructs with multiple binary or binary scored items with no guessing is outlined. The approach extends the continuous indicator procedure described by Raykov and colleagues, utilizes similarly the false discovery rate approach to multiple testing, and…
Descriptors: Models, Statistical Analysis, Error of Measurement, Test Bias
Shear, Benjamin R.; Reardon, Sean F. – Stanford Center for Education Policy Analysis, 2019
This paper describes a method for pooling grouped, ordered-categorical data across multiple waves to improve small-sample heteroskedastic ordered probit (HETOP) estimates of latent distributional parameters. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in each of a small…
Descriptors: Computation, Scores, Statistical Distributions, Sample Size
Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim – Journal of Educational and Behavioral Statistics, 2018
Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…
Descriptors: Computation, Error of Measurement, Models, Cognitive Measurement
Hyunsuk Han – ProQuest LLC, 2018
In Huggins-Manley & Han (2017), it was shown that WLSMV global model fit indices used in structural equating modeling practice are sensitive to person parameter estimate RMSE and item difficulty parameter estimate RMSE that results from local dependence in 2-PL IRT models, particularly when conditioning on number of test items and sample size.…
Descriptors: Models, Statistical Analysis, Item Response Theory, Evaluation Methods