Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 51 |
Since 2006 (last 20 years) | 166 |
Descriptor
Item Response Theory | 187 |
Statistical Analysis | 187 |
Models | 152 |
Test Items | 53 |
Computation | 46 |
Foreign Countries | 38 |
Goodness of Fit | 34 |
Simulation | 34 |
Psychometrics | 28 |
Correlation | 26 |
Scores | 25 |
More ▼ |
Source
Author
von Davier, Matthias | 5 |
Rupp, Andre A. | 4 |
Sinharay, Sandip | 4 |
Cho, Sun-Joo | 3 |
De Boeck, Paul | 3 |
Edwards, Michael C. | 3 |
Haberman, Shelby J. | 3 |
Monroe, Scott | 3 |
Wang, Chun | 3 |
Wilson, Mark | 3 |
Xu, Xueli | 3 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 1 |
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Location
Taiwan | 4 |
Australia | 3 |
Germany | 3 |
Hong Kong | 3 |
California | 2 |
Canada | 2 |
Italy | 2 |
Netherlands | 2 |
Singapore | 2 |
United Kingdom (England) | 2 |
Afghanistan | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Selena Wang – ProQuest LLC, 2022
A research question that is of interest across many disciplines is whether and how relationships in a network are related to the attributes of the nodes of the network. In this dissertation, we propose two joint frameworks for modeling the relationship between the network and attributes. In the joint latent space model in Chapter 2, shared latent…
Descriptors: Networks, Item Response Theory, Models, Statistical Analysis
Javed Iqbal; Tanweer Ul Islam – Educational Research and Evaluation, 2024
Economic efficiency demands accurate assessment of individual ability for selection purposes. This study investigates Classical Test Theory (CTT) and Item Response Theory (IRT) for estimating true ability and ranking individuals. Two Monte Carlo simulations and real data analyses were conducted. Results suggest a slight advantage for IRT, but…
Descriptors: Item Response Theory, Monte Carlo Methods, Ability, Statistical Analysis
Kim, Jinho; Wilson, Mark – Educational and Psychological Measurement, 2020
This study investigates polytomous item explanatory item response theory models under the multivariate generalized linear mixed modeling framework, using the linear logistic test model approach. Building on the original ideas of the many-facet Rasch model and the linear partial credit model, a polytomous Rasch model is extended to the item…
Descriptors: Item Response Theory, Test Items, Models, Responses
Raykov, Tenko; DiStefano, Christine – Educational and Psychological Measurement, 2021
The frequent practice of overall fit evaluation for latent variable models in educational and behavioral research is reconsidered. It is argued that since overall plausibility does not imply local plausibility and is only necessary for the latter, local misfit should be considered a sufficient condition for model rejection, even in the case of…
Descriptors: Goodness of Fit, Models, Educational Research, Behavioral Science Research
Tang, Xiaodan; Karabatsos, George; Chen, Haiqin – Applied Measurement in Education, 2020
In applications of item response theory (IRT) models, it is known that empirical violations of the local independence (LI) assumption can significantly bias parameter estimates. To address this issue, we propose a threshold-autoregressive item response theory (TAR-IRT) model that additionally accounts for order dependence among the item responses…
Descriptors: Item Response Theory, Test Items, Models, Computation
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Su, Shiyang; Wang, Chun; Weiss, David J. – Educational and Psychological Measurement, 2021
S-X[superscript 2] is a popular item fit index that is available in commercial software packages such as "flex"MIRT. However, no research has systematically examined the performance of S-X[superscript 2] for detecting item misfit within the context of the multidimensional graded response model (MGRM). The primary goal of this study was…
Descriptors: Statistics, Goodness of Fit, Test Items, Models
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Karadavut, Tugba – Applied Measurement in Education, 2021
Mixture IRT models address the heterogeneity in a population by extracting latent classes and allowing item parameters to vary between latent classes. Once the latent classes are extracted, they need to be further examined to be characterized. Some approaches have been adopted in the literature for this purpose. These approaches examine either the…
Descriptors: Item Response Theory, Models, Test Items, Maximum Likelihood Statistics
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Joshua B. Gilbert – Annenberg Institute for School Reform at Brown University, 2022
This simulation study examines the characteristics of the Explanatory Item Response Model (EIRM) when estimating treatment effects when compared to classical test theory (CTT) sum and mean scores and item response theory (IRT)-based theta scores. Results show that the EIRM and IRT theta scores provide generally equivalent bias and false positive…
Descriptors: Item Response Theory, Models, Test Theory, Computation
Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2021
Student modeling is useful in educational research and technology development due to a capability to estimate latent student attributes. Widely used approaches, such as the Additive Factors Model (AFM), have shown satisfactory results, but they can only handle binary outcomes, which may yield potential information loss. In this work, we propose a…
Descriptors: Models, Student Characteristics, Feedback (Response), Error Correction
Luo, Yong – Educational and Psychological Measurement, 2018
Mplus is a powerful latent variable modeling software program that has become an increasingly popular choice for fitting complex item response theory models. In this short note, we demonstrate that the two-parameter logistic testlet model can be estimated as a constrained bifactor model in Mplus with three estimators encompassing limited- and…
Descriptors: Computer Software, Models, Statistical Analysis, Computation
Falk, Carl F.; Monroe, Scott – Educational and Psychological Measurement, 2018
Lagrange multiplier (LM) or score tests have seen renewed interest for the purpose of diagnosing misspecification in item response theory (IRT) models. LM tests can also be used to test whether parameters differ from a fixed value. We argue that the utility of LM tests depends on both the method used to compute the test and the degree of…
Descriptors: Item Response Theory, Matrices, Models, Statistical Analysis