Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 27 |
Descriptor
Bayesian Statistics | 34 |
Maximum Likelihood Statistics | 34 |
Statistical Analysis | 34 |
Computation | 17 |
Models | 9 |
Comparative Analysis | 8 |
Monte Carlo Methods | 8 |
Statistical Bias | 8 |
Hierarchical Linear Modeling | 7 |
Sample Size | 7 |
Simulation | 7 |
More ▼ |
Source
Author
Chung, Yeojin | 3 |
Dorie, Vincent | 3 |
Gelman, Andrew | 3 |
Rabe-Hesketh, Sophia | 3 |
Liu, Jingchen | 2 |
van de Schoot, Rens | 2 |
Asparouhov, Tihomir | 1 |
Bloom, Howard S. | 1 |
Boedeker, Peter | 1 |
Bolin, Jocelyn H. | 1 |
Can, Seda | 1 |
More ▼ |
Publication Type
Journal Articles | 26 |
Reports - Research | 22 |
Reports - Descriptive | 4 |
Reports - Evaluative | 4 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Guides - Classroom - Learner | 1 |
Information Analyses | 1 |
Opinion Papers | 1 |
Education Level
Elementary Education | 1 |
Higher Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Muthén, Bengt; Asparouhov, Tihomir – Sociological Methods & Research, 2018
This article reviews and compares recently proposed factor analytic and item response theory approaches to the study of invariance across groups. Two methods are described and contrasted. The alignment method considers the groups as a fixed mode of variation, while the random-intercept, random-loading two-level method considers the groups as a…
Descriptors: Measurement, Factor Analysis, Item Response Theory, Statistical Analysis
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
De Bondt, Niki; Van Petegem, Peter – High Ability Studies, 2017
The aim of this study is to investigate interrelationships between overexcitability and learning patterns from the perspective of personality development according to Dabrowski's theory of positive disintegration. To this end, Bayesian structural equation modeling (BSEM) is applied which allows for the simultaneous inclusion in the measurement…
Descriptors: Psychological Patterns, Structural Equation Models, Bayesian Statistics, College Students
Pfaffel, Andreas; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Descriptors: Correlation, Sample Size, Error of Measurement, Accuracy
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin – Journal of Research on Educational Effectiveness, 2017
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
Descriptors: Evaluation Research, Program Evaluation, Welfare Services, Employment
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size