NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Borenstein – Research Synthesis Methods, 2024
In any meta-analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact "on average" we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the…
Descriptors: Meta Analysis, Error Patterns, Statistical Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Cairns, Maxwell; Prendergast, Luke A. – Research Synthesis Methods, 2022
As a measure of heterogeneity in meta-analysis, the coefficient of variation (CV) has been recently considered, providing researchers with a complement to the very popular I[superscript 2] measure. While I[superscript 2] measures the proportion of total variance that is due to variance of the random effects, the CV is the ratio of the standard…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Wenhao; Siegel, Lianne; Zhou, Jincheng; Zhu, Motao; Tong, Tiejun; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
A reference interval provides a basis for physicians to determine whether a measurement is typical of a healthy individual. It can be interpreted as a prediction interval for a new individual from the overall population. However, a reference interval based on a single study may not be representative of the broader population. Meta-analysis can…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kulinskaya, Elena; Hoaglin, David C. – Research Synthesis Methods, 2023
For estimation of heterogeneity variance T[superscript 2] in meta-analysis of log-odds-ratio, we derive new mean- and median-unbiased point estimators and new interval estimators based on a generalized Q statistic, Q[subscript F], in which the weights depend on only the studies' effective sample sizes. We compare them with familiar estimators…
Descriptors: Q Methodology, Statistical Analysis, Meta Analysis, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mawdsley, David; Higgins, Julian P. T.; Sutton, Alex J.; Abrams, Keith R. – Research Synthesis Methods, 2017
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In…
Descriptors: Databases, Meta Analysis, Goodness of Fit, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Schild, Anne H. E.; Voracek, Martin – Research Synthesis Methods, 2015
Research has shown that forest plots are a gold standard in the visualization of meta-analytic results. However, research on the general interpretation of forest plots and the role of researchers' meta-analysis experience and field of study is still unavailable. Additionally, the traditional display of effect sizes, confidence intervals, and…
Descriptors: Graphs, Visualization, Meta Analysis, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Peng, Peng; Namkung, Jessica; Barnes, Marcia; Sun, Congying – Journal of Educational Psychology, 2016
The purpose of this meta-analysis was to determine the relation between mathematics and working memory (WM) and to identify possible moderators of this relation including domains of WM, types of mathematics skills, and sample type. A meta-analysis of 110 studies with 829 effect sizes found a significant medium correlation of mathematics and WM, r…
Descriptors: Meta Analysis, Mathematics, Short Term Memory, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Van Daele, Tom; Hermans, Dirk; Van Audenhove, Chantal; Van den Bergh, Omer – Health Education & Behavior, 2012
The aim of this meta-analysis was to evaluate the effectiveness of psychoeducational interventions in reducing stress and to gain more insight in determining features moderating the magnitude of effects. Relevant studies were selected from 1990 to 2010 and were included according to predetermined criteria. For each study, the standardized mean…
Descriptors: Intervention, Intervals, Stress Variables, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Roseborough, David J.; McLeod, Jeffrey T.; Bradshaw, William H. – Research on Social Work Practice, 2012
This effectiveness study examined the course of treatment longitudinally and outcomes associated with psychodynamic psychotherapy for a sample of 1,050 people undertaking this treatment in a community setting, over the course of 4 years, at 3-month intervals, using the Outcome Questionnaire (OQ)-45.2. The authors used multilevel modeling to look…
Descriptors: Intervals, Longitudinal Studies, Psychotherapy, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Valentine, Jeffrey C.; Pigott, Therese D.; Rothstein, Hannah R. – Journal of Educational and Behavioral Statistics, 2010
In this article, the authors outline methods for using fixed and random effects power analysis in the context of meta-analysis. Like statistical power analysis for primary studies, power analysis for meta-analysis can be done either prospectively or retrospectively and requires assumptions about parameters that are unknown. The authors provide…
Descriptors: Statistical Analysis, Meta Analysis, Computation, Effect Size
Swaminathan, Hariharan; Horner, Robert H.; Rogers, H. Jane; Sugai, George – Society for Research on Educational Effectiveness, 2012
This study is aimed at addressing the criticisms that have been leveled at the currently available statistical procedures for analyzing single subject designs (SSD). One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been…
Descriptors: Evidence, Effect Size, Research Methodology, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff – Career and Technical Education Research, 2012
Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…
Descriptors: Vocational Education, Effect Size, Intervals, Self Esteem
Previous Page | Next Page »
Pages: 1  |  2