NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Günhan, Burak Kürsad; Friede, Tim; Held, Leonhard – Research Synthesis Methods, 2018
Network meta-analysis (NMA) is gaining popularity for comparing multiple treatments in a single analysis. Generalized linear mixed models provide a unifying framework for NMA, allow us to analyze datasets with dichotomous, continuous or count endpoints, and take into account multiarm trials, potential heterogeneity between trials and network…
Descriptors: Meta Analysis, Regression (Statistics), Statistical Inference, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan – Research Synthesis Methods, 2013
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
Descriptors: Computation, Statistical Analysis, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Verde, Pablo E.; Ohmann, Christian – Research Synthesis Methods, 2015
Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis, such as generalizing experimental results or increasing the power to detect an effect that a single study is not able to detect. However, while in meta-analysis, the main question may be simple, the structure of evidence available to answer it…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Comparative Analysis, Evidence
Peer reviewed Peer reviewed
Direct linkDirect link
Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff – Career and Technical Education Research, 2012
Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…
Descriptors: Vocational Education, Effect Size, Intervals, Self Esteem
Peer reviewed Peer reviewed
Murray, Leigh W.; Dosser, David A., Jr. – Journal of Counseling Psychology, 1987
The use of measures of magnitude of effect has been advocated as a way to go beyond statistical tests of significance and to identify effects of a practical size. They have been used in meta-analysis to combine results of different studies. Describes problems associated with measures of magnitude of effect (particularly study size) and…
Descriptors: Effect Size, Meta Analysis, Research Design, Research Methodology
Kennedy, Robert L. – 1988
Sixty-seven educational research journals were investigated to determine the frequency of usage of inferential statistical techniques therein. The most frequently used statistical methodologies in the literature reviewed, which utilized inferential approaches, are the following: analysis of variance, correlation, t-test, multiple analysis of…
Descriptors: Content Analysis, Educational Research, Literature Reviews, Meta Analysis