NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Location
Laws, Policies, & Programs
Aid to Families with…1
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karabatsos, George – Grantee Submission, 2017
This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon…
Descriptors: Bayesian Statistics, Measurement, Statistical Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao – International Journal of Research & Method in Education, 2016
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
Descriptors: Sampling, Structural Equation Models, Statistical Inference, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2016
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Descriptors: Reliability, Computation, Statistical Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Veprinsky, Anna – Educational and Psychological Measurement, 2014
Correlation attenuation due to measurement error and a corresponding correction, the deattenuated correlation, have been known for over a century. Nevertheless, the deattenuated correlation remains underutilized. A few studies in recent years have investigated factors affecting the deattenuated correlation, and a couple of them provide alternative…
Descriptors: Correlation, Sampling, Statistical Inference, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Yoonjeong; Harring, Jeffrey R.; Li, Ming – Journal of Experimental Education, 2015
The authors performed a Monte Carlo simulation to empirically investigate the robustness and power of 4 methods in testing mean differences for 2 independent groups under conditions in which 2 populations may not demonstrate the same pattern of nonnormality. The approaches considered were the t test, Wilcoxon rank-sum test, Welch-James test with…
Descriptors: Comparative Analysis, Monte Carlo Methods, Statistical Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Gu, Fei; Preacher, Kristopher J.; Ferrer, Emilio – Journal of Educational and Behavioral Statistics, 2014
Mediation is a causal process that evolves over time. Thus, a study of mediation requires data collected throughout the process. However, most applications of mediation analysis use cross-sectional rather than longitudinal data. Another implicit assumption commonly made in longitudinal designs for mediation analysis is that the same mediation…
Descriptors: Statistical Analysis, Models, Research Design, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2013
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Descriptors: Sampling, Statistical Inference, Computation, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1  |  2