Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 48 |
Descriptor
Bayesian Statistics | 71 |
Probability | 71 |
Statistical Analysis | 71 |
Models | 17 |
Comparative Analysis | 15 |
Mathematical Models | 10 |
Prediction | 9 |
Markov Processes | 8 |
Regression (Statistics) | 8 |
Simulation | 8 |
Classification | 7 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 14 |
Postsecondary Education | 9 |
Early Childhood Education | 2 |
Elementary Education | 2 |
Junior High Schools | 2 |
Kindergarten | 2 |
Middle Schools | 2 |
Grade 3 | 1 |
Grade 8 | 1 |
Primary Education | 1 |
Secondary Education | 1 |
More ▼ |
Audience
Researchers | 2 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Sinharay, Sandip; Johnson, Matthew S. – Journal of Educational and Behavioral Statistics, 2021
Score differencing is one of the six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Fu, Qiang; Guo, Xin; Land, Kenneth C. – Sociological Methods & Research, 2020
Count responses with grouping and right censoring have long been used in surveys to study a variety of behaviors, status, and attitudes. Yet grouping or right-censoring decisions of count responses still rely on arbitrary choices made by researchers. We develop a new method for evaluating grouping and right-censoring decisions of count responses…
Descriptors: Surveys, Artificial Intelligence, Evaluation Methods, Probability
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Sampaio, Cristina; Wang, Ranxiao Frances – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
Recall of remembered locations reliably reflects a compromise between a target's true position and its region's prototypical position. The effect is quite robust, and a standard interpretation for these data is that the metric and categorical codings blend in a Bayesian combinatory fashion. However, there has been no direct experimental evidence…
Descriptors: Spatial Ability, Memory, Bayesian Statistics, Probability
Marsman, Maarten; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
P values have been critiqued on several grounds but remain entrenched as the dominant inferential method in the empirical sciences. In this article, we elaborate on the fact that in many statistical models, the one-sided "P" value has a direct Bayesian interpretation as the approximate posterior mass for values lower than zero. The…
Descriptors: Bayesian Statistics, Statistical Inference, Probability, Statistical Analysis
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Man, Kaiwen; Harring, Jeffery R.; Ouyang, Yunbo; Thomas, Sarah L. – International Journal of Testing, 2018
Many important high-stakes decisions--college admission, academic performance evaluation, and even job promotion--depend on accurate and reliable scores from valid large-scale assessments. However, examinees sometimes cheat by copying answers from other test-takers or practicing with test items ahead of time, which can undermine the effectiveness…
Descriptors: Reaction Time, High Stakes Tests, Test Wiseness, Cheating
Henman, Paul; Brown, Scott D.; Dennis, Simon – Australian Universities' Review, 2017
In 2015, the Australian Government's Excellence in Research for Australia (ERA) assessment of research quality declined to rate 1.5 per cent of submissions from universities. The public debate focused on practices of gaming or "coding errors" within university submissions as the reason for this outcome. The issue was about the…
Descriptors: Rating Scales, Foreign Countries, Universities, Achievement Rating
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon – American Journal of Evaluation, 2018
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
Descriptors: Bayesian Statistics, Evaluation Methods, Statistical Analysis, Hypothesis Testing
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks