NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 47 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Goretzko, David – Educational and Psychological Measurement, 2022
Determining the number of factors in exploratory factor analysis is arguably the most crucial decision a researcher faces when conducting the analysis. While several simulation studies exist that compare various so-called factor retention criteria under different data conditions, little is known about the impact of missing data on this process.…
Descriptors: Factor Analysis, Research Problems, Data, Prediction
Christopher Martin Amissah – ProQuest LLC, 2024
Measurement of latent constructs is one of the most challenging tasks in psychological research. Unlike physical variables, latent constructs are not directly observable but are inferred through individuals' responses to a set of items often referred to as measurement instruments, tests, surveys, or assessments. For decades, exploratory factor…
Descriptors: Models, Psychological Studies, Replication (Evaluation), Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Son, Sookyoung; Hong, Sehee – Educational and Psychological Measurement, 2021
The purpose of this two-part study is to evaluate methods for multiple group analysis when the comparison group is at the within level with multilevel data, using a multilevel factor mixture model (ML FMM) and a multilevel multiple-indicators multiple-causes (ML MIMIC) model. The performance of these methods was evaluated integrally by a series of…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Structural Equation Models, Groups
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
von Oertzen, Timo; Schmiedek, Florian; Voelkle, Manuel C. – Journal of Intelligence, 2020
Properties of psychological variables at the mean or variance level can differ between persons and within persons across multiple time points. For example, cross-sectional findings between persons of different ages do not necessarily reflect the development of a single person over time. Recently, there has been an increased interest in the…
Descriptors: Cognitive Ability, Individual Differences, Statistical Analysis, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kogar, Hakan – Journal of Education and Learning, 2018
The aim of the present research study was to compare the findings from the nonparametric MSA, DIMTEST and DETECT and the parametric dimensionality determining methods in various simulation conditions by utilizing exploratory and confirmatory methods. For this purpose, various simulation conditions were established based on number of dimensions,…
Descriptors: Evaluation Methods, Nonparametric Statistics, Statistical Analysis, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Robert H. Kosar – ProQuest LLC, 2017
Principal component analysis is an important statistical technique for dimension reduction and exploratory data analysis. However, it is not robust to outliers and may obfuscate important data structure such as clustering. We propose a version of principal component analysis based on the robust L2E method. The technique seeks to find the principal…
Descriptors: Research Universities, Taxonomy, Multivariate Analysis, Factor Analysis
Dogucu, Mine – ProQuest LLC, 2017
When researchers fit statistical models to multiply imputed datasets, they have to fit the model separately for each imputed dataset. Since there are multiple datasets, there are always multiple sets of model results. It is possible for some of these sets of results not to converge while some do converge. This study examined occurrence of such a…
Descriptors: Statistical Analysis, Error of Measurement, Goodness of Fit, Monte Carlo Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kogar, Hakan – International Journal of Assessment Tools in Education, 2018
The aim of this simulation study, determine the relationship between true latent scores and estimated latent scores by including various control variables and different statistical models. The study also aimed to compare the statistical models and determine the effects of different distribution types, response formats and sample sizes on latent…
Descriptors: Simulation, Context Effect, Computation, Statistical Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4