Publication Date
In 2025 | 1 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 17 |
Since 2016 (last 10 years) | 53 |
Since 2006 (last 20 years) | 129 |
Descriptor
Sample Size | 145 |
Statistical Analysis | 145 |
Models | 85 |
Computation | 45 |
Structural Equation Models | 42 |
Monte Carlo Methods | 38 |
Goodness of Fit | 29 |
Comparative Analysis | 26 |
Error of Measurement | 25 |
Simulation | 25 |
Statistical Bias | 24 |
More ▼ |
Source
Author
Fan, Xitao | 4 |
Hong, Sehee | 3 |
Konstantopoulos, Spyros | 3 |
Spybrook, Jessaca | 3 |
Suh, Youngsuk | 3 |
Bentler, Peter M. | 2 |
Finch, W. Holmes | 2 |
Hancock, Gregory R. | 2 |
Holland, Paul | 2 |
Kelley, Ken | 2 |
Lai, Keke | 2 |
More ▼ |
Publication Type
Education Level
Higher Education | 9 |
Secondary Education | 5 |
Postsecondary Education | 4 |
Elementary Education | 3 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Grade 4 | 1 |
Grade 7 | 1 |
Audience
Researchers | 4 |
Location
Australia | 3 |
Finland | 2 |
Taiwan | 2 |
Texas | 2 |
United States | 2 |
Asia | 1 |
Botswana | 1 |
California | 1 |
Hong Kong | 1 |
India | 1 |
Indiana | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Hamzeh Ghasemzadeh; Robert E. Hillman; Daryush D. Mehta – Journal of Speech, Language, and Hearing Research, 2024
Purpose: Many studies using machine learning (ML) in speech, language, and hearing sciences rely upon cross-validations with single data splitting. This study's first purpose is to provide quantitative evidence that would incentivize researchers to instead use the more robust data splitting method of nested k-fold cross-validation. The second…
Descriptors: Artificial Intelligence, Speech Language Pathology, Statistical Analysis, Models
Joshua Isidore Peri – ProQuest LLC, 2022
Applied researchers faced with limited resources can utilize planned missing designs by incorporating missing data into their research design to collect more and higher quality data compared to a conventional experimental design. Two-method measurement planned missing designs (TMM-PMD) are a type of planned missing design whereby researchers…
Descriptors: Growth Models, Research Design, Measurement, Sample Size
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Sim, Mikyung; Kim, Su-Young; Suh, Youngsuk – Educational and Psychological Measurement, 2022
Mediation models have been widely used in many disciplines to better understand the underlying processes between independent and dependent variables. Despite their popularity and importance, the appropriate sample sizes for estimating those models are not well known. Although several approaches (such as Monte Carlo methods) exist, applied…
Descriptors: Sample Size, Statistical Analysis, Predictor Variables, Path Analysis
Daniel McNeish; Jeffrey R. Harring; Daniel J. Bauer – Grantee Submission, 2022
Growth mixture models (GMMs) are a popular method to identify latent classes of growth trajectories. One shortcoming of GMMs is nonconvergence, which often leads researchers to apply covariance equality constraints to simplify estimation, though this may be a dubious assumption. Alternative model specifications have been proposed to reduce…
Descriptors: Growth Models, Classification, Accuracy, Sample Size
Nathan P. Helsabeck – ProQuest LLC, 2022
Assessing student achievement over multiple years is complicated by students' annual matriculation through different classrooms. The process of matriculation, or annual classroom change, threatens the validity of statistical inferences because it violates the independence of observations necessary in a regression context. The current study…
Descriptors: Growth Models, Academic Achievement, Student Promotion, Statistical Analysis
Christopher Martin Amissah – ProQuest LLC, 2024
Measurement of latent constructs is one of the most challenging tasks in psychological research. Unlike physical variables, latent constructs are not directly observable but are inferred through individuals' responses to a set of items often referred to as measurement instruments, tests, surveys, or assessments. For decades, exploratory factor…
Descriptors: Models, Psychological Studies, Replication (Evaluation), Factor Analysis
Son, Sookyoung; Hong, Sehee – Educational and Psychological Measurement, 2021
The purpose of this two-part study is to evaluate methods for multiple group analysis when the comparison group is at the within level with multilevel data, using a multilevel factor mixture model (ML FMM) and a multilevel multiple-indicators multiple-causes (ML MIMIC) model. The performance of these methods was evaluated integrally by a series of…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Structural Equation Models, Groups
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Kalkan, Ömür Kaya – Measurement: Interdisciplinary Research and Perspectives, 2022
The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM),…
Descriptors: Comparative Analysis, Sample Size, Test Length, Algorithms
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit
Su, Shiyang; Wang, Chun; Weiss, David J. – Educational and Psychological Measurement, 2021
S-X[superscript 2] is a popular item fit index that is available in commercial software packages such as "flex"MIRT. However, no research has systematically examined the performance of S-X[superscript 2] for detecting item misfit within the context of the multidimensional graded response model (MGRM). The primary goal of this study was…
Descriptors: Statistics, Goodness of Fit, Test Items, Models