NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Li Tan; Siqing Wei; Xingchen Xu; Jason Morphew – European Journal of Engineering Education, 2025
Despite the availability and potential usefulness of demographic and contextual data in many quantitative studies within engineering education, the preference for ANOVA over regression models remains prevalent, often without clear justification. A mapping review of literature from the EJEE and JEE spanning 2012-2022 identified 98 studies using…
Descriptors: Regression (Statistics), Statistical Analysis, Educational Benefits, Research Methodology
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Chaney, Bradford – American Journal of Evaluation, 2016
The primary technique that many researchers use to analyze data from randomized control trials (RCTs)--detecting the average treatment effect (ATE)--imposes assumptions upon the data that often are not correct. Both theory and past research suggest that treatments may have significant impacts on subgroups even when showing no overall effect.…
Descriptors: Randomized Controlled Trials, Data Analysis, Outcomes of Treatment, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Olvera Astivia, Oscar L.; Zumbo, Bruno D. – Educational and Psychological Measurement, 2015
To further understand the properties of data-generation algorithms for multivariate, nonnormal data, two Monte Carlo simulation studies comparing the Vale and Maurelli method and the Headrick fifth-order polynomial method were implemented. Combinations of skewness and kurtosis found in four published articles were run and attention was…
Descriptors: Data, Simulation, Monte Carlo Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Zhushan – Journal of Educational Measurement, 2014
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Descriptors: Test Bias, Sample Size, Statistical Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bolsinova, Maria; Tijmstra, Jesper – Journal of Educational and Behavioral Statistics, 2016
Conditional independence (CI) between response time and response accuracy is a fundamental assumption of many joint models for time and accuracy used in educational measurement. In this study, posterior predictive checks (PPCs) are proposed for testing this assumption. These PPCs are based on three discrepancy measures reflecting different…
Descriptors: Reaction Time, Accuracy, Statistical Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Barry; Glaesser, Judith – International Journal of Social Research Methodology, 2016
Ragin's Qualitative Comparative Analysis (QCA) is often used with small to medium samples where the researcher has good case knowledge. Employing it to analyse large survey datasets, without in-depth case knowledge, raises new challenges. We present ways of addressing these challenges. We first report a single QCA result from a configurational…
Descriptors: Social Science Research, Robustness (Statistics), Educational Sociology, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Debeer, Dries; Janssen, Rianne; De Boeck, Paul – Journal of Educational Measurement, 2017
When dealing with missing responses, two types of omissions can be discerned: items can be skipped or not reached by the test taker. When the occurrence of these omissions is related to the proficiency process the missingness is nonignorable. The purpose of this article is to present a tree-based IRT framework for modeling responses and omissions…
Descriptors: Item Response Theory, Test Items, Responses, Testing Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chang, Chi – Society for Research on Educational Effectiveness, 2015
It is known that interventions are hard to assign randomly to subjects in social psychological studies, because randomized control is difficult to implement strictly and precisely. Thus, in nonexperimental studies and observational studies, controlling the impact of covariates on the dependent variables and addressing the robustness of the…
Descriptors: Job Satisfaction, Intervention, Sample Size, Weighted Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lockwood, J. R.; McCaffrey, Daniel F. – Grantee Submission, 2015
Regression, weighting and related approaches to estimating a population mean from a sample with nonrandom missing data often rely on the assumption that conditional on covariates, observed samples can be treated as random. Standard methods using this assumption generally will fail to yield consistent estimators when covariates are measured with…
Descriptors: Simulation, Computation, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
MacDonald, George T. – ProQuest LLC, 2014
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Descriptors: Simulation, Item Response Theory, Models, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Magis, David; De Boeck, Paul – Educational and Psychological Measurement, 2012
The identification of differential item functioning (DIF) is often performed by means of statistical approaches that consider the raw scores as proxies for the ability trait level. One of the most popular approaches, the Mantel-Haenszel (MH) method, belongs to this category. However, replacing the ability level by the simple raw score is a source…
Descriptors: Test Bias, Data, Error of Measurement, Raw Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2