Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 25 |
Descriptor
Statistical Analysis | 26 |
Statistical Bias | 26 |
Structural Equation Models | 26 |
Computation | 16 |
Error of Measurement | 12 |
Monte Carlo Methods | 9 |
Sample Size | 8 |
Comparative Analysis | 7 |
Longitudinal Studies | 5 |
Simulation | 5 |
Correlation | 4 |
More ▼ |
Source
Author
A. R. Georgeson | 1 |
Aiken, Leona S. | 1 |
Baldasaro, Ruth E. | 1 |
Bauer, Daniel J. | 1 |
Bentler, Peter M. | 1 |
Bray, Bethany C. | 1 |
Cai, Li | 1 |
Cao, Chunhua | 1 |
Carl Falk | 1 |
Cham, Heining | 1 |
Chen, Yi-Hsin | 1 |
More ▼ |
Publication Type
Reports - Research | 23 |
Journal Articles | 22 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 4 |
Grade 5 | 3 |
Grade 4 | 2 |
Grade 7 | 2 |
Intermediate Grades | 2 |
Elementary Secondary Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
Grade 6 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
National Longitudinal Survey… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Hayes, Timothy; Usami, Satoshi – Educational and Psychological Measurement, 2020
Recently, quantitative researchers have shown increased interest in two-step factor score regression (FSR) approaches to structural model estimation. A particularly promising approach proposed by Croon involves first extracting factor scores for each latent factor in a larger model, then correcting the variance-covariance matrix of the factor…
Descriptors: Regression (Statistics), Structural Equation Models, Statistical Bias, Correlation
Son, Sookyoung; Lee, Hyunjung; Jang, Yoona; Yang, Junyeong; Hong, Sehee – Educational and Psychological Measurement, 2019
The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew-t with equal skew and skew-t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with…
Descriptors: Statistical Distributions, Statistical Analysis, Structural Equation Models, Comparative Analysis
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Covariance Pattern Mixture Models: Eliminating Random Effects to Improve Convergence and Performance
McNeish, Daniel; Harring, Jeffrey – Grantee Submission, 2019
Growth mixture models (GMMs) are prevalent for modeling unknown population heterogeneity via distinct latent classes. However, GMMs are riddled with convergence issues, often requiring researchers to atheoretically alter the model with cross-class constraints to obtain convergence. We discuss how within-class random effects in GMMs exacerbate…
Descriptors: Structural Equation Models, Classification, Computation, Statistical Analysis
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Coulombe, Patrick; Selig, James P.; Delaney, Harold D. – International Journal of Behavioral Development, 2016
Researchers often collect longitudinal data to model change over time in a phenomenon of interest. Inevitably, there will be some variation across individuals in specific time intervals between assessments. In this simulation study of growth curve modeling, we investigate how ignoring individual differences in time points when modeling change over…
Descriptors: Individual Differences, Longitudinal Studies, Simulation, Change
Wolf, Erika J.; Harrington, Kelly M.; Clark, Shaunna L.; Miller, Mark W. – Educational and Psychological Measurement, 2013
Determining sample size requirements for structural equation modeling (SEM) is a challenge often faced by investigators, peer reviewers, and grant writers. Recent years have seen a large increase in SEMs in the behavioral science literature, but consideration of sample size requirements for applied SEMs often relies on outdated rules-of-thumb.…
Descriptors: Sample Size, Structural Equation Models, Statistical Analysis, Statistical Bias
Jak, Suzanne; Oort, Frans J.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…
Descriptors: Statistical Bias, Measurement, Structural Equation Models, Hierarchical Linear Modeling
Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…
Descriptors: Structural Equation Models, Monte Carlo Methods, Comparative Analysis, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1 | 2