NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal…1
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Qin, Xu; Hong, Guanglei – Journal of Educational and Behavioral Statistics, 2017
When a multisite randomized trial reveals between-site variation in program impact, methods are needed for further investigating heterogeneous mediation mechanisms across the sites. We conceptualize and identify a joint distribution of site-specific direct and indirect effects under the potential outcomes framework. A method-of-moments procedure…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Statistical Analysis, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric – Journal of Experimental Education, 2015
This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…
Descriptors: Effect Size, Measurement Techniques, Statistical Analysis, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Schweig, Jonathan – Journal of Educational and Behavioral Statistics, 2014
Measures of classroom environments have become central to policy efforts that assess school and teacher quality. This has sparked a wide interest in using multilevel factor analysis to test measurement hypotheses about classroom-level variables. One approach partitions the total covariance matrix and tests models separately on the…
Descriptors: Factor Analysis, Robustness (Statistics), Measurement, Classroom Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Sun, Shuyan; Pan, Wei – International Journal of Research & Method in Education, 2014
As applications of multilevel modelling in educational research increase, researchers realize that multilevel data collected in many educational settings are often not purely nested. The most common multilevel non-nested data structure is one that involves student mobility in longitudinal studies. This article provides a methodological review of…
Descriptors: Statistical Analysis, Hierarchical Linear Modeling, Longitudinal Studies, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Vanhove, Jan – Studies in Second Language Learning and Teaching, 2015
I discuss three common practices that obfuscate or invalidate the statistical analysis of randomized controlled interventions in applied linguistics. These are (a) checking whether randomization produced groups that are balanced on a number of possibly relevant covariates, (b) using repeated measures ANOVA to analyze pretest-posttest designs, and…
Descriptors: Randomized Controlled Trials, Intervention, Applied Linguistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S. – Educational and Psychological Measurement, 2013
This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…
Descriptors: Bayesian Statistics, Socioeconomic Status, Student Interests, Gender Differences